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ABSTRACT 
Detailed finite element modeling of masonry structures is essential to understand their complex 
mechanical behavior accounting for different failure mechanisms, which highly depends on the 
mortar joints (i.e., mortar layer and unit-mortar interaction). As such, this study presents a 
plasticity-based constitutive model for a 3D interface element that is capable of capturing various 
failure modes of mortar joints, including tension cracking, shear sliding, and compressive 
crushing. It is characterized by two hyperbolic yield surface criteria: tension-shear failure surface 
and compressive cap surface. The evolutions of the yield surfaces and state variables are 
formulated based on the concept of strain-softening/hardening. A fully implicit Euler Backward 
integration algorithm, combined with a local-global Newton-Raphson (NR) solver, is adopted to 
achieve the predictor-corrector returning mapping procedure in the numerical formulation. 
Additionally, the variations of dilatancy and fracture energy are introduced, aiming to describe the 
mechanical behavior of mortar joints accurately. The model is implemented in the finite element 
software Abaqus via UMAT. The proposed interface model is validated with the unit-mortar-unit 
assemblages and unreinforced masonry walls. The capability of newly developed interface model 
shows its potential to be used to further explore the mechanical behavior of masonry structures.  
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INTRODUCTION 
Masonry structures have been widely used throughout the world due to its durability, strength 
hydro-thermal performance, and aesthetics. The mechanical behavior of masonry structures 
depends on the properties of the masonry constituents and their interaction. Due to the 
heterogeneity and anisotropy of masonry composites, simulation or prediction of structural 
masonry behavior remains a challenging task. Detailed finite element modeling (referred to as 
micro modeling), characterized by the explicit modeling of each constituent and interface, has been 
proved to be a robust tool to study the masonry structure. Although at high computational cost, 
micro modeling allows capturing all the possible failure modes. To achieve a compromise between 
computational cost and accuracy, the simplified micro modeling approach was proposed in [1]. In 
this approach, mortar joints and unit-mortar contacts are lumped into interfaces while units are 
modeled with size expansion to keep the masonry structures' overall geometry. 

As the key aspect of the simplified micro modeling approach, the interface model should be able 
to consider all possible failure modes: tension cracking, shear sliding, and compressive crushing. 
Great efforts have been devoted to developing interface models. For example, Lourenco made an 
early attempt to develop a multi-yield surface model [1], which had later been extensively used 
and refined by other researchers [2] [3]. However, most current constitutive models were 
implemented in the 2D space. Also, some important characteristics were not well considered in 
the formulation, such as: the variation of dilatancy and fracture energy. As evidenced by the 
experimental results [4], the dilatancy effects will decrease with the increase of normal 
compressive stress and plastic shear displacement. Inappropriate descriptions of the dilatancy 
model may increase normal stress, resulting in a considerable overestimate of shear capacity in the 
pressure-dependent model. For the fracture energy, it can be observed that the higher compressive 
stress will improve the ductility and energy dissipation capacity [4], inducing a larger value for 
mode II fracture energy, which should also be considered in the model formulation. 

As such, this paper presents a new 3D multi-yield surface model for interface element, which can 
be used in the finite element analysis of masonry structure to capture all known possible interfacial 
failure modes. The proposed multi-yield surface interface model is characterized by two 
hyperbolic yield surface criteria, which can overcome the numerical singularity in the tension-
shear region. The dilatancy effects and the variation of fracture energy are incorporated into the 
proposed interface model to describe the mortar joint behavior more accurately. A fully implicit 
Euler Backward integration algorithm, combined with a local-global Newton-Raphson (NR) 
solver, is adopted to achieve the predictor-corrector returning mapping procedure in the numerical 
formulation. The auto-adaptive sub-stepping algorithm is used to enhance the accuracy, 
robustness, and efficiency. Finally, unit-mortar-unit assemblages and masonry walls are simulated 
to validate the proposed interface model.  



INTERFACE CONSTITUTIVE MODEL FORMULATION 
The proposed interface model is characterized by the traction-separation relationship. The 
interfacial behavior in the elastic regime can be written in the matrix form shown in Equation 1: 
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where three stiffness constants knn, kss and ktt relate the stress components (i.e., σn, σs, σt) and the 
displacement separations (i.e., δn, δs, δt) in the normal and tangential directions of the interface. 

Multi-yield surface criterion 
The proposed multi-yield surface criterion consists of two hyperbolic surfaces: tension-shear 
failure surface (f1) and compressive cap surface (f2), shown in Figure 1. Compared with the Mohr-
Coulomb and tension cut-off yield criterion commonly used in the masonry interface model [1], 
the proposed model, which is described by a continuous and differentiable tension-shear yield 
function, can overcome the computational singularity in the non-smooth corner of the tension-
shear region. Two yield criteria are adopted for the tension-shear yield surface f1 and the 
compression cap failure surface f2, as given in Equation 2 and Equation 3, respectively: 
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where c, σt, tanφ are the cohesion, tensile strength, and the frictional coefficient (i.e., tangent of 
frictional angle φ), respectively; fc, σc, tanθ are the peak compressive strength, compressive 
strength, asymptote slope of compression cap, respectively.  

  

Figure 1: Yield surface in the 3D space 

Flow direction 
Similar to some frictional materials (e.g., soil, rock, concrete), masonry's mortar joints also exhibit 
the ‘dilatancy’ phenomenon [4] under shear loading, accompanied by the volume increase and 
shear resistance buildup. Accordingly, in the tension-shear failure region, a non-associated flow 



rule is adopted to determine the displacement flow direction. The plastic potential g1 is formulated 
as Equation 4:  
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where cq is the apparent cohesion, tanψ is the tangent of dilatancy angle, referred as ‘dilatancy 
coefficient’, σt is the tensile strength. In contrast, for the compression cap yield surface f2, the 
associated flow rule is assumed. 

State variables evolution 
When at least one yield criterion is violated, the yield surface(s) will shrink or expand based on 
the strain-softening/hardening law. In the tension-shear failure region, the evolution of tensile 
strength σt and cohesion c, originally proposed in [1], are used here: 

1exp t
t t

I

f κ
f

G

 
  

 
  , 0 2

0 exp
II

c κ
c c

G

 
  

 
              (5) 

where ft is the peak tensile strength, GI is the mode I fracture energy, c0 is the peak cohesion 
strength, GII is the mode II fracture energy, ĸ1 and ĸ2 are two softening scalars, formulated in the 
rate form, given in Equation 6:  
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where un
p , us

p  and ut
p  are the plastic displacements in the normal, first tangential, and second 

tangential direction, respectively.  The Macaulay bracket ⟨⟩ means that a compressive stress state 
has no contribution to the plastic deformation in the normal direction. The quadratic combinations 
of plastic displacements in Equation 6 ensure that the loss percentages for tensile strength and 
cohesion are equal through the entire softening process. This fully coupled tension-shear softening 
model is consistent with the fact that both softening behaviors are related to the interface 
debonding at the micro-level [1].  

Similar to the cohesion strength loss, the frictional coefficient tanφ has a gradual change during 
the plastic deformation process. The evolution of frictional coefficient is coupled with cohesion 
softening, given in Equation 7: 
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where tanφ0 and tanφr are the initial and residual frictional coefficients, respectively.  



The fracture energy represents the ductility and energy dissipation capacity of mortar joints. Thus, 
the correct formulation of the fracture energy is necessary in the constitutive model. Previous 
experimental research showed the dependence of mode II fracture energy GII on the compressive 
normal stress. A comprehensive regression analysis indicated that a linear relationship between 
mode II fracture energy GII and compressive normal stress σn can be as the general tendency [4], 
given by Equation 8: 
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where a is a negative constant parameter, GII
0 is the fracture energy when σn=0. 

For the plastic potential surface g1, apparent cohesion cq and dilatancy coefficient tanψ need to be 
defined. The evolution law of apparent cohesion cq is the same with cohesion c as shown in 
Equation 5 with a different initial value cq

0 . For the dilatancy coefficient, as evidenced by the 

experimental results [4], it will decrease with increasing plastic shear displacement; furthermore, 
the dilatancy effect is very limited under the high compressive normal stress. Consequently, an 
exponential decay term related to resultant plastic shear displacement and a linear pressure 
dependence relationship, originally proposed in [2], are extended to three-dimensional space, 
shown in Equation 9: 
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where tanψ0 is the dilatancy coefficient when σn=0 and us
p=ut

p=0, tanψr is the residual dilatancy 
coefficient, δ is the dilatancy softening scalar, σu is the compressive stress at which tanψ=0, 
referred to as ‘critical dilatancy compressive stress’ in this study.  

Regarding the variables in the compression cap yield surface, the hardening/softening law for 
compressive strength σc was taken from [1], as shown in Equation 10: 
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where 𝜎ത and ĸ with subscripts i, m, p and r denote the initial, medium, peak and residual values in 
terms of compressive strength σc and softening/hardening scalar ĸ3 fc is the peak compressive 
strength (i.e., fc=σതp), the softening/hardening scalar ĸ3 is defined as the quadratic combinations of 

three plastic displacement components in the rate form, as shown in Equation 11: 
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PLASTICITY INTEGRATION ALGORITHOM 

Auto-adaptive sub-stepping algorithm 
In the context of sub-stepping strategy, a single load step with a displacement increment du is 
discretized into several sub-steps, resulting in a sub-incremental displacement ωidu (0<ωi<1) in 
each sub-step, given in Equation 12: 

i iω  du du du  and i 1ω                (12) 

where ωi is the sub-step reduction factor. An auto-adaptive step size control strategy, proposed in 
[5], is used to adjust the reduction factor, which helps to minimize the computational cost:  
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where Tol is the prescribed tolerance, error is the residual which is updated in each NR iteration, 
and x is a constant value to influence the sub-step size change ratio. It is worth mentioning that x 
should be well defined to avoid a large variation in sub-step size, which may result in the numerical 
instability. 

Multi-yield surface plasticity integration strategy 
Generally, the specific case in which both yield criteria introduced in Equations (1) and (2) are 
satisfied is discussed here. The non-smooth corner is defined by the intersection region of the 
tension-shear yield surface and compression cap as shown in Figure 1. According to the multi-
yield surface plasticity strategy proposed by Simo [6], in the presence of yielding, the plastic strain 



increment is obtained as a linear combination of the plastic strain rates of the two yield surfaces, 
given in Equation 14: 
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p, dus
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]୘  is the plastic displacement vector, λ̇ଵ and λ̇ଶ  are the plastic 

multipliers. 

Subsequently, for each sub-step, the predictor-corrector returning mapping strategy based on the 
Euler Backward algorithm gives a set of nonlinear equations in Equation 15:  
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where subscript i+1 represents the sub-step level. The unknowns in the nonlinear Equation 15 are 
σi+1, κi+1, and λi+1. A standard NR method is adopted to solve the nonlinear system to ensure the 
quadratic convergence provided that the initial solution sufficiently close to the exact one. The 
residuals of Equation 15 can be linearized as shown in Equation 16: 
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where r represents the residual for each NR iteration, J is the Jacobian matrix; the NR iteration 
cycles are indicated by the superscripts k and k+1.The exact solution can be obtained by letting 
the LHS of residual be equal to 0. The results can be improved iteratively by Equation 16 until the 
residual reaches a prescribed tolerance. 

For the global NR iteration at the structural level, the consistent tangent operator, defined as 
∂σ
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, 

is needed for the current load step to achieve the quadratic convergence. 
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differentiating the Equation 15 with respect to du and applying the chain rule, leading to Equation 
17:  
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The recursive structure in Equation 17 means that the consistent tangent operator from the previous 

sub-step has to be considered for the current sub-step update. The final solution for 
∂σ

∂du
 will be 

obtained until the summation of sub increments is equal to the total displacement increments. The 
initial conditions for Equation 17 are corresponding to the case i=0, shown in Equation 18: 
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FINITE ELEMENT MODEL VALIDATION 
The proposed constitutive model for interface element is implemented in the commercial Finite 
Element Package Abaqus via the user-defined subroutine UMAT [7] and then validated by two 
models at different scales: unit-mortar-unit assemblages and masonry walls.  

Unit-mortar-unit assemblages 
Different test arrangements of unit-mortar-unit assemblage were discussed in [4]. Two 
representative experimental series under compression-shear loading, referred to as ‘CS-brick90’ 
and ‘CS-block96’ [4], are simulated here.  

For the material parameters used in the FE simulation, the elastic stiffness constants were 
determined as a relatively large value to best fit the curves in Figure 2. For the plastic tension and 
shear material properties, all the parameters are determined directly from the experimental report 
[4]. The adopted material parameters of interface element are provided in Table 1, only elastic 
behavior is considered for the units. 

Table 1: Material parameters for the interface [4] 

Specimen 
Tension Shear 

ft (MPa) GI (N/mm) c0 (MPa) cq
0 (MPa) GII

0 (N/mm) a tanφ0 tanφr 
CS-brick90 0.42 0.0011 1.1 100 c0 0.02 -0.14 0.82 0.85 
CS-block96 0.02 0.0005 0.14 100 c0 0.005 -0.02 0.75 0.73 

 
(a)                                                             (b) 

Figure 2: Comparison between numerical and experimental results for unit-mortar-unit 
assemblages under compression-shear loading: (a) CS-brick90; (b) CS-block96 

The simulated shear stress-displacement curves are compared with the experimental ones, as 
shown in Figure 2. It can be observed that a good agreement with the experimental results is 
achieved in terms of the peak strengths and post peak behaviors. 



Another unit-mortar-unit assemblage in direct shear [8] was simulated to validate the dilatancy 
behavior. The dilatancy behavior is illustrated by the relationship of normal plastic displacement  
un

p and resultant shear plastic displacement: 
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Similarly, the strength-related parameters were obtained directly from the experimental report [8]. 
For the dilatancy-related material parameters, the two critical dilatancy coefficients (i.e., tanφ0 and 
tanφr) are determined as the slopes of un

p
− uτ

p curve when uτ
p=0 and uτ

p is large enough such that 
the dilatancy coefficient reaches a stable residual value. Dilatancy softening scalar δ is calibrated 
to match the dilatancy softening trend (i.e., the slope of  un

p
− uτ

p curve). The dilatancy parameters 
are provided in Table 2. 

Table 2: Dilatancy-related parameters for the interface [8] 

Parameter tanψ0 tanψr σu (MPa) δ 
Value 0.35 0.001 2.0 0.15 

The numerical-experimental comparisons in terms of dilatancy effects are given in Figure 3. The 
direct shear tests were conducted at three compressive stress levels. Obviously, the dilatancy 
effects are restricted under a higher compressive stress level and larger shear displacement. In the 
FE model, the dilatancy effects can be negligible when the absolute value of applied compressive 
stress |σc|>σu=2.0MPa; accordingly, zero slope can be observed in the FE simulation results for the 
case |σc|=4.31MPa. It can be observed from Figure 3 that the experimental results can be well 
reproduced with reasonable material parameters calibrated. 

  
Figure 3: Comparison between numerical and experimental results for the dilatancy curve 

un
p-uτ

p at different compressive stress levels 

Unreinforced masonry (URM) wall under in-plane (IP) loading 
The two URM walls considered in this study were designed to be identical, which were 
experimentally investigated at Eindhoven University of Technology [9]. The wall dimension is: 
height=1000mm, width=990mm, and thickness=100mm. The wall's top and bottom courses were 



clamped in steel beams, and the wall was tested to failure subjected to a monotonically increasing 
horizontal load after an initial pre-compression pc=0.3MPa. Elastic behavior is considered for the 
unit with the interface element inserted at the middle position, acting as a potential unit crack path. 
Only tension-shear failure surface is activated in the potential unit crack. For the mortar interface, 
the material properties are available in the experimental report with a negligible dilatancy effect 
[9] (i.e., tanψ0=tanψr=0). The material parameters are summarized in Table 3. 

 

Figure 4: Load-displacement comparison between FE simulation and experiment 

Figure 4 shows the simulated global behavior in terms of the load-displacement curve. Although 
a slight difference can be observed, the FE-predicted load-displacement curves agree relatively 
well with the experimental results regarding initial stiffness, peak strength, and post-peak behavior. 

Table 3: Material parameters for the URM wall J4D 

 Parameters Mortar joints Unit crack 

Elastic 
knn (N/mm3) 82 1000 
kss (N/mm3) 36 1000 
ktt (N/mm3) 36 1000 

Plastic 

Tension 
ft (MPa) 0.25 2 

GI (N/mm) 0.018 0.008 

Shear 

c0 (MPa) 0.35 2.8 
Cq0 100c0 100c0 

GII
0 (N/mm) 0.125 0.05 

a -0.13 -0.2 
tanφ0 0.75 1 
tanφr 0.75 1 

Compression 

Tanθ 0.045 

 

σതi (MPa) 3.5 
σതp (MPa) 10.5 
σതm (MPa) 5.25 
σതr (MPa) 1.5 
ĸp (mm) 0.09 
ĸm (mm) 0.49 



Figure 5 shows the failure crack pattern in the FE model and experiment. The crack propagation 
starts from horizontal cracking developed at the bottom and top of the wall, then to the stepped 
cracking at the center of the wall, and finally to the diagonal crack pattern. The FE simulation 
result also matches well with the experimental one regarding the local behavior. 

        
Figure 5: Failure crack pattern for J4D: (a) FE simulation; (b) Experiment 

CONCLUSION 
A new multi-yield surface model for the interface element was proposed for the finite element 
analysis of masonry structures. The proposed interface model was formulated and implemented in 
the general finite element package Abaqus. An error-based auto-adaptive sub-stepping algorithm 
was used in the fully implicit Backward Euler integration procedure. The variation of dilatancy 
effect and fracture energy were considered. The interface model was validated by two 
experimental tests: unit-mortar-unit assemblages and a URM wall. The numerical-experiment 
comparison results showed that the proposed interface model can be used in the finite element 
analysis to further explore the complex mechanical behavior of masonry structures.    
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