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ABSTRACT 
Shelf angle design represents the intersection of masonry design, steel design, and depending on the 
building’s primary structural system, concrete, wood, or steel design. Therefore, shelf angle research in this 
area of masonry is often regarded as a “steel design” or “concrete design” problem, rather than a masonry 
design problem. There are few papers published on the topic and even less actual testing, with the 
experimental work to date focusing on shelf angles anchored to wood-frame floors. Complex interactions 
between the tied masonry veneer and the steel angle, as well as beam behavior of the brick veneer between 
anchor bolts are difficult to capture with models simple enough for hand calculations. A new design 
approach is proposed which more accurately accounts for the interaction between the tied masonry veneer 
and the shelf angle. The proposed design method more accurately reflects field observations of masonry 
veneer where a L102mm mm x 102mm x 6.4mm (L4in. x 4in. x ¼ in.) supports 7.315 to 9.144 m (24 to 30 
feet) of 90 mm (3-5/8 in.) clay brick veneer without evidence of structural distress. This translates into a 
5% to 8% cost savings on the shelf angle. The proposed design method uses the Force Method in 
combination with Virtual work to solve the 1-degree statically indeterminate system that results from the 
introduction of the tie restraining force at the first course of ties. This new method was then compared to 
the traditional statically determinate method as well as 2D and 3D finite element models. The proposed 
method also allows parameters like; veneer height, veneer type, shelf angle size and thickness, air space 
depth, and bolt hole location to be easily altered without the time-consuming effort of redrawing the system 
in finite element software.  
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INTRODUCTION 
Shelf angle design represents the intersection of masonry design, steel design, and depending on the 
building’s primary structural system, concrete, wood or steel design. Therefore, shelf angle research in this 
area of masonry is often regarded as a “steel design” or “concrete design” problem, rather than a masonry 
design problem.  There are few papers published on the topic [3], [4], [5], [6], [7], and even less actual 
testing, with the experimental work to date focusing on shelf angles anchored to wood-frame floors [1], [2]. 
In fact, Dillon concluded that there is no consensus by design professionals or the literature as to the best 
approach for shelf angle design and suggested the use of readily available finite element models is the best 
solution [7]. Shelf angle design is not as simple and intuitive as previously thought [7]. Complex 
interactions between the tied masonry veneer and the angle and beam behavior of the brick veneer between 
anchor bolts are difficult to capture with models simple enough for hand calculations. Design 
simplifications to a statically determinate system are often used [6] but produce conservative results that 
unnecessarily increase the size and cost of the shelf angle as well as the size and frequency of the anchor 
bolts. A statically determinate system is easily solved using simple statics, but ignores the restraining force 
produced by the masonry ties and the beam action of the brick veneer identified by McGinley [5]. These 
impacts on the shelf angle can be captured in 3D structural models with finite element software as 
recommended by Dillion [7], but as mentioned, are difficult to reproduce with simple hand calculations. 
The introduction of the first course of masonry ties results in a statically indeterminate problem. However, 
ignoring the restraining force of the ties produces shelf angle designs that appear to be extremely 
conservative to performance of these systems as observed in the field, particularly when it comes to 
estimating the deflection. Fig. 1 demonstrates the impact of both the beam effect of the brick veneer and 
the restraining force of the ties on a brick veneer of an actual brick veneer in the field. On this building, the 
shelf angle supporting an approximately 20-foot span of clay brick veneer has fallen to the ground due to 
anchor bolt withdrawal. The horizontal crack developing into step cracking has formed due to the absence 
of support of the weight of the veneer, but the veneer has not fallen to the ground. It appears to be the result 
of the brick veneer supporting its own self weight through beam behavior (or flat arch arching action) 
between anchor bolts (Fig. 1), while the masonry ties continue to laterally anchor the veneer to the wall. 

 

Figure 1: Failed Shelf Angle – Illustration of Beam Action and Masonry Ties on Veneer 
due to shelf angle support failure with step cracking visible  



Therefore, a new design approach is proposed which more accurately accounts for the interaction between 
the tied masonry veneer and the shelf angle[8]. The proposed design method more accurately reflects field 
observations of masonry veneer where a L102mm mm x 102mm x 6.4mm (L4in. x 4in. x ¼ in.) supports 
7.315 to 9.144 m (24 to 30 feet) of 90 mm (3-5/8 in.) without evidence of structural distress. It is clear from 
“as-built” performance of masonry veneers that the deflections and load distribution on a shelf angle are 
less than those estimated with current simplified design methods. Fig. 2 illustrates a typical brick veneer 
with wood stud back up detail at the foundation used in Alberta, Canada. 

 

Figure 2: Brick Veneer Wood Stud Backup Wall – Foundation Detail 

Design simplifications to a statically determinate system are often used [6]. However, this method produces 
conservative results compared to finite element models and field observations.  The impact of the masonry 
ties and deflection reductions introduced by the stiffness contributions of the brick can be captured with 3D 
finite element [7] software using beam, shell or solid elements. However, 3D finite element models are 
typically too complex for hand calculations. The proposed design method employs the use of the Force 
Method in combination with Virtual work to solve the 1-degree statically indeterminate system that results 
from the introduction of tie restraining force at the first course of ties. This new method is compared to the 
simplified statically determinate method as well as 2D and 3D finite element models with the SAP 2000 
software. Use of the proposed design method reduces the size of the shelf angles and anchor bolts and better 
reflect actual performance of constructed masonry veneers at the same height. The proposed method also 
allows parameters like; veneer height, veneer type, shelf angle size and thickness, air space depth, and bolt 
hole location to be easily altered without the time-consuming effort of redrawing the system with 3D finite 
element software.  



FORCE METHOD AND VIRTUAL WORK TO DETERMINE THE REACTIONS 
To better represent the actual performance of the system, the restraining force provided by the ties should 
be accounted for in the calculation creating a statically indeterminate structure as depicted in Fig. 3.  

 
Figure 3: Free body Diagram of Shelf Angle at Foundation – Statically indeterminate. 

The following values were used to populate Fig. 3 parameters: 
 
P  = Unfactored (service load) of masonry veneer and shelf angle (N) per meter = 17,614 N (3960 lbf)  
Pf = Factored Load of masonry veneer and shelf angle (N) per meter  = 24,659 N (5544 lbf)  
RTIE = Reaction force in the brick ties at the first course of ties (kN) per meter 
Vf = Reaction force in the brick ties at the first course of ties (kN) per meter 
Tf = Reaction force in the brick ties at the first course of ties (kN) per meter 
Cf = Reaction force in the brick ties at the first course of ties (kN) per meter 
L1 = Vertical Leg length 102.6 mm 
L2 = Horizontal Leg length = 102.6 mm 
L3 = Vertical distance to the center of the bolt hole = 38.1 mm 
L4 = Centroid of brick veneer (typically 45 mm for metric modular 92 mm brick) 
L5 = Eccentricity of veneer load = Air space + (veneer thickness / 2) = (25.4 + 46.1) = 71.5 mm 
L6 = L1 - L3 (mm) 
L7 = Max 300 mm from base support = 278.35 mm. 
L8 = Vertical distance between the ties and the center of the bolt hole = 214.9 
L9 = Total length of horizontal leg = air space + veneer thickness = 25.4 + 92.1 = 117.5 mm 
tangle = thickness of the horizontal leg of the angle = 6.35 mm 
b = 1000 mm (1 meter of wall design length) 



veneer_thick = thickness of the masonry veneer = 92.1 mm 
V-tie_radius = 2.4 mm 
f’m = the compressive strength of the masonry veneer = 12 MPa 
Em = Modulus of Elasticity of the masonry veneer = 850f’m 
Es = Modulus of Elasticity of structural steel = 200,000 MPa 
Iangle = b ∙ tangle

3 / 12 = 21,337 mm4 
Iveneer = b ∙ tveneer

3 / 12 == 65,102,497 mm4 
Itie = 4 ∙  [∙(V-tie_radius)4 / 4] = 104.23 mm4 
 
To use the Force Method, the statically indeterminate structure was made determinate by the introduction 
of a release. In this case the release chosen was at coordinate 1 in Fig 4.  

 

Figure 4: Force Method Steps and Reactions on the Released Structure. 
 
The service load, P and a unit load at coordinate 1 were then applied to the released (determinate) structure. 
The reactions were solved with 2D statics and the bending moment diagrams generated for these loadings. 
The results are presented in Fig. 5 without proof. 
 

Calculation of Displacements and Flexibility Using Virtual Work 
Virtual work is required to determine values for the displacement, D and the flexibility, f. The general form 
for virtual work for moments and neglecting axial deformations is: 

(1)                      ∆ ൌ ׬ 
௠ೠ∙ெೞ

ா∙ூ
 

Where mu is the moment equation when a unit load is applied at the release and Ms is the moment equation 
for the released (statically determinate) structure subjected to the loading. The bending moment diagrams 
(Fig. 5) were determined from the reactions when the service load was applied to the released structure 
(Fig. 4) and the when the unit load was applied to the released structure (Fig. 4). The displacements Dn and 
flexibilities fn parameters of the four (4) frames creating the structure must be aggregated into a total using 
Eq. 2. Starting at the anchor bolt and moving counterclockwise, member 1 is A to B, member 2 is B to C, 
member 3 is C to D, and member 4 is D to E. The moment equations to determine the displacements, in Eq. 
(3) to (7) can be obtained from Fig. 5 and are presented without proof. 
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Figure 5: Reactions and Moment Diagrams of the Released Structure. 
 
Next the flexibility f is calculated from the moment equations determined from Fig. 5. Once again, the 
moment equations are presented without proof in the following flexibility equations. 
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Calculation of the Redundant Force (RTIE) at the Release 
The redundant force can now be calculated according to Eq. (12). 
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However, a generic equation for the redundant force, F is ideal as it permits easy manipulation of parameters 
and easy implementation in either a spreadsheet or programmed into an app. MathCAD was used to describe 
RTIE = F symbolically, and yielded: 
 

(13)      𝑅்ூா ൌ

షು∙ቀమ∙ಽఱ∙ಽల∙ಽళశయ∙ಽఱ
మ∙ಽళቁ

ల∙ಶೞ∙಺ೌ೙೒೗೐

ಽల∙ಽళ
మశయ∙ಽఱ∙ಽళ

మ

య∙ಶೞ∙಺ೌ೙೒೗೐
ା ಽళ

య

య∙ಶ೘∙಺ೡ೐೙೐೐ೝ

ൌ  
షభళలభర ∙൫మ∙ ళభ.రఱ ∙ లయ.ఱ ∙  మళఴ.యఱ శయ∙ళభ.రఱమ ∙ మళఴ.యఱ൯

ల ∙ మబబ,బబబ ∙ మభ,యయళ
లయ.ఱ ∙మళఴ.యఱమశయ∙ళభ.రఱ∙మళఴ.యఱమ

య∙మబబ,బబబ∙మభ,యయళ
ା ሺమళఴ.యఱሻయ

య∙భబ,మబబ∙లఱ,భబమ,రవళ

 = -2,760 N 

 
Entering values in Eq. (13) from the “Statically Indeterminate” structure in Figure 4 yields the identical 
result to the complicated integration equations above. 
 
Calculation of the Reactions of the Statically Indeterminate structure using the Redundant 
Once the Redundant it is known, 2D static equilibrium can be used to solve for the remaining reactions. 
Without proof, the remaining reaction equations are: 
 
(14)    𝑉 ൌ  𝑃 ൌ 17,614 𝑁 ൌ 17.61 𝑘𝑁          

(15)   𝐶 ൌ  
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ൌ 10,483 𝑁 ൌ 10.48 𝑘𝑁  

(16)   𝑇 ൌ  െሺ𝐶 ൅ 𝑅்௜௘ሻ ൌ  െ7,723 𝑁 ൌ െ7.723 𝑘𝑁    
 
The results for the reactions factored for dead load only (1.4 DL) using the values for the L102x102x6.4mm 
(L4in. x 4 in. x ¼ in.) shelf angle supporting 30 feet of veneer in this example are easily determined by 
either substituting Pf = 24,659N for P into Eq. (13) to (16) or simply multiplying RTIE, V, C and T by 1.4. 
The factored reactions without proof are: 
 
(17)  𝑅்ூா,௙ ൌ  1.4 ∙ 𝑅்ூா ൌ െ3,864 N ൌ െ3.864 kN 

(18)  𝑉௙ ൌ  1.4 ∙ 𝑉 ൌ 24,659 𝑁 ൌ 24.66 𝑘𝑁   

(19)  𝐶௙ ൌ  1.4 ∙ 𝐶 ൌ 14,675 𝑁 ൌ 14.67 𝑘𝑁 

(20)  𝑇௙ ൌ  1.4 ∙ 𝑇 ൌ െ10,812 𝑁 ൌ െ10.81 𝑘𝑁 

VIRTUAL WORK TO DETERMINE THE DEFLECTION AT POINT C 
Virtual Work must once again be used, however, this time it is used to determine the defection at point C. 
Given the similarity to the virtual work procedure in the previous section the moment equations from the 
moment diagrams in Fig. 6 for the deflection at point C will be given without proof. 

It is important to note that the statically indeterminate structure is now used and that the generic equation 
for RTIE must be applied when solving the reactions to generate the moment diagram of the unit load applied 
at C. 
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Figure 6: Reactions and Moment Diagrams of the Statically Indeterminate Structure. 
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(25)   ∆஼ൌ ∑ ∆௜ൌ
ସ
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The generic formula for the deflection  from MathCAD at point C is: 
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Once the value of the deflection at point C was obtained, the deflection at point F was estimated 
using the equation for deflection of a cantilever of Length, L subjected to an end moment, M (Eq. 
27) where the end moment can be obtained from Fig. 6 and is equivalent to RTIE multiplied by L7: 
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2D FINITE ELEMENT MODEL COMPARISON  
To confirm the accuracy of the results using the Force Method/Virtual Work approach, a 2D finite element 
model with frame elements was created with the SAP 2000 finite element software. A 3D rendering of the 
2D model can be seen in Fig. 8. The frame elements were assigned a 1 m in length and the same dimensional 
properties as described in the parameters below Fig. 3. The reactions and deflections obtained from this 
model were tabulated in Table 1 for easy comparison to the Force Method/Virtual Work approach. 

 

Figure 8: SAP 2000 Model of Force Method/Virtual Work Approach using Frames 

3D FINITE ELEMENT MODEL COMPARISON 
A 3D finite element model with shelf angle and brick veneer modeled with shell elements and masonry ties 
modeled with frame elements was undertaken (Fig. 9). The results were used to compare the accuracy of 
the Force Method/Virtual Work approach and the 2D Finite Element model as both are unable to account 
for torsional effects between the anchor bolts. A 1016 mm (approximately 1-meter-long shelf angle section 
was explored with anchor bolts at 406 mm o.c.  The reactions and deflections obtained from this model 
were tabulated in Table 1. 



 

Figure 9: SAP 2000 Model Using Shells for Angle/Veneer and Frames for Ties. 

DISCUSSION 
A comparison between the statically determinate system typically used to design shelf angles [6], the 
proposed Force Method/Virtual Work method, and the 2D and 3D finite element (FE) models was 
undertaken. The results can be found in Table 1 below. 

Table 1: Comparison of results for a shelf angle supporting 9.144 m (30 ft.) of Brick Veneer 

 Tie  
Reaction 

Anchor Bolt 
Loads 

Found. 
Load 

 
Max. 

Model RTie,f 
 (kN/m) 

Vf 

(kN/m) 
Tf 

(kN/m) 
Cf 

(kN/m) 
Deflect. 
(mm) 

Statically Determinate N/A 24.66 27.75 27.75 1.544 

Force Method/Virt. Work 3.863 24.66 10.81 14.67 0.2189 

SAP 2000 – 2D FE Model 3.865 24.66 10.81 14.67 0.2249 

SAP 2000 – 3D FE model 3.776 25.07 8.384 12.63 0.2101 

From Table 1 it can be seen that the statically determinate model provides extremely conservative results 
with a deflection that is 7.4 times the value of the  SAP 2000 – 3D FE model.  The Force Method/Virtual 
Work approach produced a deflection value 9.4% larger than the SAP 2000 – 3D FE model. It can also be 
seen that the Force Method/Virtual Work approach produced nearly identical results to the SAP 2000 – 2D 
FE model (within 2.7% on the deflection). One assumption with the Force Method/Virtual Work method 
that might be considered overly generous, is the moment connection between the brick veneer and the 
horizontal leg of the shelf angle. A pinned connection or rotational spring connection may be more accurate. 
However, the brick veneer element is only 278 (10.9 in.) long and not the 9.144 m (30 ft.) full height of the 
veneer, thereby contributing far less to the overall stiffness of the system. For this reason and justified by 
the comparisons to the SAP 2000 - Shell elements finite element model, the simplification appears to 
produce a reasonably accurate estimate of the horizontal leg’s deflection and reaction forces. Another 
simplification is that only one row of ties is considered. However, the 3D Finite Element Model 
demonstrated that the further the ties are away from the shelf angle, the less lateral load they attract with 
virtually no lateral load being attracted by the brick ties above 1.22 m (48 in.). In the SAP 2000 – 3D FE 
model, the reaction of the middle tie located at 278 mm (10.9 in.) above the shelf angle is 1.06 kN (239 lb.) 
while the middle tie at 1.22 m (48 in.) above the shelf angle is 0.033 kN (7.42 lb.) and decreases even more 



the further the tie is from the wall base. These results further lend support that the 2D simplification using 
a single row of ties at the first course of ties produces reasonable, hand-calculatable results.  

CONCLUSIONS 
A new design method was proposed which more accurately accounts for the interaction between the tied 
masonry veneer and the shelf angle. The proposed approach uses the Force Method in combination with 
Virtual work to solve the 1-degree statically indeterminate system that results from the introduction of a tie 
restraining force at the first course of ties. The equations that result can be placed into a spreadsheet or 
online application and allow a designer to alter parameters like; veneer height, veneer type, shelf angle size 
and thickness, air space depth and bolt hole location without the effort of redrawing the system with finite 
element software. A more accurate estimate of the deflection of the horizontal leg of the shelf angle and the 
reaction forces acting on the anchor bolts with the new method translates to more efficient designs that 
better reflect actual field performance. A more accurate estimation of the deflection and the forces acting 
on the anchor bolt result in a decrease in the shelf angle size from 12.7 mm (½ in.) when using a traditional 
hand calculation [6] to 6.35 mm (1/4 in.). In Alberta, this translates to a cost savings of 35.8% per lineal foot 
for the shelf angle or approximately 5% to 8% reduction in the total cost of the brick veneer (depending on 
the number of floors and frequency of shelf angles). Given the absence of experimental data for the 
structural capacity of shelf angles anchored to concrete, it would be prudent to conduct experiments with 
shelf angles directly bolted to concrete foundations and anchored at the first course to a backup wall to 
assess the viability in the lab of the method proposed herein. 
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