
15th Canadian Masonry Symposium 
Ottawa, Canada 
June 2-5, 2025 

 

Practical Application of Two New Diagonal Shear Load Capacity 
Equations for Partially Grouted Masonry Walls 

Klaus Medeirosi, Jianyixian Zhuii, Rodolfo Palhares iii, 
Guilherme Parsekianiv, and Nigel Shrivev 

ABSTRACT 
The paper aims to demonstrate the practical application of two new equations to predict the diagonal shear 
load capacity (DSLC) of partially grouted masonry walls (PGMW). The first equation, validated through 
numerical and experimental analysis, has shown significant improvements in predicting the DSLC for walls 
with different geometric configurations, considering factors such as masonry material properties, applied 
axial load, vertical and horizontal reinforcement, and vertical and horizontal grouting. The second equation, 
validated through existing experimental testing of small-scale material testing and full-scale wall testing, 
considers factors of only the masonry, the axial load, and the horizontal reinforcement: the masonry 
contribution is based on experimental testing for cohesion and the coefficient of friction rather than creating 
a function of the compressive strength. This study focuses on applying the equations to various practical 
scenarios and exploring their limitations and capabilities. Examples of calculations are provided, examining 
the impact of wall aspect ratios, the minimum and maximum allowable lengths of ungrouted panels between 
grouted cores, and the necessary conditions for a wall to be classified as partially grouted. These examples 
seek to illustrate the equations’ flexibility and accuracy in predicting wall shear behavior under different 
design conditions. This practical approach will give engineers a clearer understanding of the equations’ 
real-world applicability and provide guidelines for their use in structural design. The study emphasizes the 
equations’ potential to improve knowledge of the behaviour of masonry subject to shear and to replace or 
complement existing code provisions, improving the safety and efficiency of masonry design. Further 
refinement may be in order to provide a consistently accurate method of predicting the DSLC of PGMW. 
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INTRODUCTION 
The structural behavior of partially grouted masonry walls (PGMW) has received significant attention in 
recent decades due to its relevance in structural engineering. These walls are a cost-effective and versatile 
solution, commonly serving as lateral load-resisting elements in buildings. PGMW exhibit complex and 
anisotropic behavior, which arises from the interactions among blocks, mortar, ungrouted and grouted cells, 
and reinforcement. The in-plane shear strength of these walls is crucial for ensuring their structural 
performance under lateral loads. However, accurately predicting this strength remains challenging due to 
various factors that influence the behavior of PGMW, including wall geometry, material properties, and 
reinforcement configurations. 

Current design standards, such as TMS 402/602 [1] and CSA S304 [2], provide equations to estimate the 
in-plane shear strength of masonry walls. However, studies have shown that these equations often yield 
inconsistent results when applied to PGMW. For instance, the Canadian and American standards tend to 
underestimate the shear capacity of partially grouted walls, particularly when compared to fully grouted 
configurations. Moreover, the contributions of axial load, horizontal reinforcement, and other parameters 
are not uniformly addressed, leading to significant variability in predictions and, in some cases, unsafe 
designs. Such discrepancies have been widely documented in the literature [e.g., 3-6], highlighting the need 
for improved models that account for the unique characteristics of partially grouted walls. 

Significant efforts have been made to develop more accurate predictive models for the in-plane shear 
strength of PGMW. Recent research has sought to address those limitations through both experimental and 
analytical approaches. Bolhassani et al. [5] and Dillon [7] emphasized the importance of considering 
individual contributions from each component of the wall system, such as vertical and horizontal 
reinforcements, in addition to masonry compressive strength and wall geometry. Statistical methods, 
including stepwise regressions and advanced modeling techniques, have also been employed to enhance 
prediction accuracy. For example, Izquierdo et al. [8] demonstrated the effectiveness of statistical 
regression models in outperforming existing code-based equations, while Oan and Shrive [9] proposed 
simplified design models that offer better precision for diagonal shear resistance in partially grouted walls. 

Building upon this body of knowledge, the current study first expands the work of Medeiros et al. [6], which 
introduced a new equation for predicting the diagonal shear load capacity (DSLC) of PGMW. This equation 
was developed using an extensive database comprising numerical simulations and experimental data, and 
has demonstrated superior performance compared to existing models in terms of accuracy and reliability. 
However, while the proposed equation has been validated statistically, its practical demonstration and 
application under specific conditions remain to be further explored. 

As the relationship between masonry compressive and shear strengths is still debatable, Zhu et al. [10] 
argued that the masonry contribution to shear strength should be solely dependent on material testing for 
that property. Zhu et al. [10], therefore, developed an equation to predict the DSLC of PGMW based on 
their triplet test results and existing studies of PGMW. Although preliminary, the equation showed some 
promise. Therefore, it is included here to demonstrate that different approaches can provide good results. 

The objective here, therefore, is to provide a detailed demonstration of the proposed equations, presenting 
a step-by-step explanation of their terms and practical application through different examples. Additionally, 
the study aims to evaluate the equations' usability across further structural scenarios, offering 
recommendations for their implementation in practice. By addressing these aspects, this work seeks to 
integrate theoretical advancements and practical applications, contributing to safer and more efficient 
designs of partially grouted masonry walls.  



EQUATION RATIONALE – MEDEIROS ET AL. (2022) 
The equation proposed by Medeiros et al. [6] was primarily developed to predict the DSLC of PGMW 
constructed with hollow concrete masonry units. Addressing limitations in existing standards like TMS 
402/602 [1] and CSA S304 [2], the equation integrates a wide range of influential parameters, including 
wall geometry, material properties, axial load, vertical and horizontal grouting patterns, and vertical and 
horizontal reinforcement configurations. The equation terms were refined by adapting concepts from 
previous studies and applying mathematical regressions to an extensive dataset comprising 96 finite element 
simulations and 59 experimentally tested walls. The validation process demonstrated the equation's 
accuracy, with significantly reduced errors compared to existing models, establishing it as a reliable tool 
for design. The following subsections detail each term of the proposed equation. 

General Form 
(1) 𝑉௡ = 𝑘௚௩𝑘௚௛𝑉௠ + 𝑉௣ + 𝑉௥௩ + 𝑉௥௛ 

Where 𝑉௡ is the nominal diagonal shear load capacity; 𝑘௚௩ is a factor concerning the vertical grouting; 𝑘௚௛ 
is a factor concerning the horizontal grouting; 𝑉௠  is the factored shear load capacity provided by the 
masonry; 𝑉௣ is the factored shear load capacity provided by the axial compressive load; 𝑉௥௩ is the factored 
shear load capacity provided by vertical reinforcement; and 𝑉௥௛ is the factored shear load capacity provided 
by horizontal reinforcement. 

Contribution of the Vertical Grouting 
(2) 𝑠௚௩,௔௩௚ = 𝑙௪/𝑛௨௚௣௩  
(3) 𝑘௚௩ = 5.539 − 0.583 ln൫𝑠௚௩,௔௩௚൯     ൫𝑓𝑜𝑟 𝑠௚௩,௔௩௚ in mm൯    

In this component, 𝑠௚௩,௔௩௚ is the average spacing between the vertical grouting; 𝑙௪ is the wall length; 𝑛௨௚௣௩ 
is the number of the vertical ungrouted panels formed along the wall length; and 𝑘௚௩ is the factor to account 
for vertical grouting. 

Contribution of the Horizontal Grouting 
(4) 𝑠௚௛,௔௩௚ = ℎ௪/𝑛௨௚௣௛  
(5) 𝑘௚௛ = 1.633 − 0.079 ln൫𝑠௚௛,௔௩௚൯ ≥ 1.0      ൫𝑓𝑜𝑟 𝑠௚௛,௔௩௚ in mm൯    

Note: Take 𝑘௚௛ = 1.0 if the calculated value is less than 1.0. 

Here, 𝑠௚௛,௔௩௚ is the average spacing between the horizontal grouting; ℎ௪ is the wall height; 𝑛௨௚௣௛ is the 
number of the horizontal ungrouted panels formed along the wall height; and 𝑘௚௛ is the factor to account 
for horizontal grouting. 

Masonry Strength Adjustment 
(6) 𝑘௖ = 1 − 0.058൫5 − ℎ௣ 𝑡௣⁄ ൯ଵ.଴଻  
(7) 𝑓௠,௚∗ = 𝑘௖𝑓௠,௚ᇱ    
(8) 𝑓௠,௨∗ = 𝑘௖𝑓௠,௨ᇱ     
(9) 𝑓௠,௪∗ = ൫𝑓௠,௚∗  𝐴௘௛,௚  +  𝑓௠,௨∗  𝐴௘௛,௨൯ 𝐴௘௛⁄            

In this adjustment, 𝑘௖ is the correction factor concerning the prism height-to-thickness ratio; ℎ௣ is the prism 
height; 𝑡௣ is the prism thickness; 𝑓௠,௚∗  is the adjusted compressive grouted prism net strength; 𝑓௠,௚ᇱ  is the 
compressive grouted prism net strength; 𝑓௠,௨∗  is the adjusted compressive ungrouted prism net strength; 𝑓௠,௨ᇱ  is the compressive ungrouted prism net strength; 𝑓௠,௪∗  is the weighted average of the adjusted grouted 
and ungrouted prism net strengths of wall; 𝐴௘௛,௚ is the grouted effective horizontal cross-sectional area of 



wall; 𝐴௘௛,௨ is the ungrouted effective horizontal cross-sectional area of wall; and 𝐴௘௛,௚ is the total effective 
horizontal cross-sectional area of wall. 

Contribution of the Masonry 
The shear span ratio, 𝑀௨ ሺ𝑉௨𝑑௩ሻ⁄ , is rewritten as the relation between the effective height and depth of wall, ℎ௘ 𝑑௩⁄ , so that ℎ௘ = 𝑀௨ 𝑉௨⁄ . Usually, ℎ௘ is taken as the distance from the wall’s base to the lateral load 
application point for cantilever walls, or half of this distance for double-curvature walls. For simplicity, 𝑑௩ 
can be set equal to 𝑙௪. 

(10) 𝛽௥ = ቐ0.183 − 0.140ሺℎ௘ 𝑑௩⁄ ሻ         𝑖𝑓      0.25 ≤ ℎ௘ 𝑑௩⁄ < 0.50 0.134 − 0.034ሺℎ௘ 𝑑௩⁄ ሻ        𝑖𝑓       0.50 ≤ ℎ௘ 𝑑௩⁄ < 1.000.190 − 0.091ሺℎ௘ 𝑑௩⁄ ሻ        𝑖𝑓       1.00 ≤ ℎ௘ 𝑑௩⁄ ≤ 2.00    
Note: ℎ௘ 𝑑௩⁄  shall be taken as not less than 0.25 nor more than 2.0. Thus, ℎ௘ 𝑑௩⁄  = 0.25 if the calculated 
value is less than 0.25 and ℎ௘ 𝑑௩⁄  = 2.0 if the calculated value is more than 2.0. 

(11) 𝑉௠ = 𝛽௥𝐴௘௛ඥ𝑓௠,௪∗      ൫in N, for 𝑓௠,௪∗  in MPa, and 𝐴௘௛ in mmଶ൯    
For this component, 𝑀௨ is the moment at the section under consideration; 𝑉௨ is the shear force at the section 
under consideration; ℎ௘ is the effective height of wall; 𝑑௩ is the effective depth of wall; 𝛽௥ is the factor 
concerning the shear span ratio; 𝑉௠ is the factored shear load capacity provided by masonry; 𝐴௘௛ is the total 
effective horizontal cross-sectional area of wall; and 𝑓௠,௪∗  is the weighted average of the adjusted grouted 
and ungrouted prism net strengths of wall. 

Contribution of the Axial Load 

(12) 𝑃 = 0.9𝑃ௗ 
(13) 𝑡𝑎𝑛 𝜃 =  0.4ሺ𝑙௪/ℎ௪ሻ  
(14) 𝑉௣ = 0.4𝑃 𝑡𝑎𝑛 𝜃       ሺin N, for 𝑃 in Nሻ  𝑃 is the axial compressive load on the section under consideration; 𝑃ௗ is the axial compressive dead load; 𝜃 is the angle formed between the wall axis and the strut; 𝑙௪ is the wall length; ℎ௪ is the wall height; and 𝑉௣ is the factored shear load capacity provided by axial compressive load. 

Contribution of the Vertical Reinforcement 

(15) 𝑉௥௩ = 0.02𝐴௩𝑓௬௩ඥ𝑓௠,௪∗     ൫in N, for 𝑓௬௩ and 𝑓௠,௪∗  in MPa, and 𝐴௩ in mmଶ൯                         𝑉௥௩ is the factored shear load capacity provided by vertical reinforcement; 𝐴௩ is the total cross-sectional 
area of vertical reinforcement; 𝑓௬௩ is the yield strength of vertical reinforcement; and 𝑓௠,௪∗  is the weighted 
average of the adjusted grouted and ungrouted prism net strengths of wall. 

Contribution of the Horizontal Reinforcement 
The reinforcement in the bond beams in the top and bottom courses must be excluded when calculating the 
horizontal reinforcement area. 

(16) 𝜌௛ = 𝐴௛ 𝐴௘௩⁄ ≤ 0.20%                  

Note: Take 𝜌௛ = 0.20% if the calculated value is more than 0.20%. 

(17) 𝑉௥௛ = 0.02𝜌௛𝐴௘௩𝑓௬௛ඥ𝑓௠,௪∗    ൫in N, for 𝑓௬௛  and 𝑓௠,௪∗  in MPa, and 𝐴௘௩ in mmଶ൯    
In this term, 𝜌௛  is the total horizontal reinforcement ratio; 𝐴௛  is the cross-sectional area of effective 
horizontal reinforcement; 𝐴௘௩ is the effective vertical cross-sectional area of wall; 𝑉௥௛ is the factored shear 



load capacity provided by horizontal reinforcement; 𝑓௬௛ is the yield strength of horizontal reinforcement; 
and 𝑓௠,௪∗  is the weighted average of the adjusted grouted and ungrouted prism net strengths of wall. 

Limit Capacity 

(18) 𝑉௡,௠௔௫ = 0.4𝐴௘௛ඥ𝑓௠,௪∗      ൫in N, for 𝑓௠,௪∗  in MPa, and 𝐴௘௛  in mmଶ൯    
Note: Take 𝑉௡ = 𝑉௡,௠௔௫ if  𝑉௡ ൐ 𝑉௡,௠௔௫. 𝑉௡,௠௔௫ is the maximum nominal diagonal shear load capacity; 𝐴௘௛ is the total effective horizontal cross-
sectional area of wall; and 𝑓௠,௪∗  is the weighted average of the adjusted grouted and ungrouted prism net 
strengths of wall. 

EQUATION RATIONALE – ZHU ET AL. (2025) 
The equation proposed by Zhu et al. [10] was developed based on the European standard Eurocode 6 [11].  
In the Eurocode, the masonry shear strength can be determined by a simple material test called the triplet 
test, which requires only a stack bonded prism of three units and two mortar joints (Figure 1). As the middle 
block is pushed down against the outer blocks, almost pure shear develops along the mortar joints. The steel 
bars and plates are tightened before starting each experiment, so a set initial pre-compression level can be 
applied to the prism before being loaded in shear. After multiple experiments, the cohesion and frictional 
coefficient of the masonry can be extracted according to a Mohr-Coulomb criterion, and these values can 
be used to calculate the DSLC of PGMW. 

 
Figure 1: Triplet Test Schematics [10] 

General Form 
There are three terms in the Zhu et al. [10] equation, involving contributions from the masonry, the axial 
load, and the horizontal reinforcement. 

(19) 𝑉௡ = 𝑉௠ + 𝑉௣ + 𝑉௥௛ 

Masonry Strength Adjustment 
According to Zhu et al. [10], the shear load prediction from triplet test results is: 

(20) 𝑉௧௥ = 0.18 𝑓௚𝐴௧௥,௖ + 1.4𝑃ௗ + 10,000                                  

Where 𝑓௚  is the compressive strength of grout; and 𝐴௧௥,௖  is the area of grouted cores. During their 
experiments, they observed that grout would only flow under the webs if it was deliberately well compacted. 
Therefore, the area of the web should not be taken into consideration as part of the net shearing area. For 
those walls without accompanying triplet tests, the following equations can be used to predict the results of 
triplet test as ungrouted or fully grouted prisms: 



(21) 𝜏௧௥,௨ = 𝑉௧௥,௨/𝐴௧௥,௨          
(22) 𝜏௧௥,௚ = 𝑉௧௥,௨/𝐴௧௥,௚                                                                                                                                           

Where 𝜏௧௥,௨  is the shear strength of an ungrouted prism; 𝑉௧௥,௨  is the load prediction from Equation 20, 
assuming a non-grouted prism; 𝐴௧௥,௨ is the shearing area of that prism, taking only the area of face-shells; 𝜏௧௥,௚ is the shear strength of fully grouted prism; 𝑉௧௥,௨ is the load prediction from Equation 20, assuming a 
fully grouted prism; and 𝐴௧௥,௚ is the shearing area of the fully grouted prism, taken as the gross area. 

(23) 𝑓௩௢ = ൫𝜏௧௥,௚ − 𝜏௧௥,௨൯𝛾௚ + 𝜏௧௥,௨               

Here 𝑓௩௢ is the final adjusted shear strength of the masonry; and 𝛾௚ is the percentage of grouting of the wall 
being predicted, taken as the effective shearing area 𝐴௘௛ divided by the horizontal gross area 𝐴௚. 

Contribution of the Masonry 
(24) 𝑉௠ = 0.8𝑓௩௢𝑡௣𝑙௖𝛾௚      

Where 𝑙௖ is the length of the compression zone of the wall, taken as half  the wall length. 

Contribution of the Axial Load 
(25) 𝑉௣ = 0.8𝜎ௗ tan𝛼 𝑡௣𝑙௖𝛾௚      

Where 𝜎ௗ is the axial stress applied to the wall, taken as compressive load divided by the horizontal gross 
area; and 𝛼 is the angle of coefficient of the wall, assumed to be 45° if not determined from the triplet test. 

Contribution of the Horizontal Reinforcement 
The contribution of the horizontal reinforcement in this equation is only dependent on the bond beam 
reinforcements of the PGMW. 

(26) 𝑉௥௛ = 0.9𝐴௛𝑓௬௩      
EXAMPLES OF USE OF THE EQUATIONS 
Three examples are presented to demonstrate the application of the proposed DSLC equations. Each 
example represents a distinct configuration of PGMW. Example 1 applies the equation to experimental 
Wall 7 from Schultz (1996) (Figure 2a), Example 2 to the experimental Wall PG085-24 from Nolph & 
Elgawady (2012) (Figure 2b), and Example 3 to the numerical Wall 21 from Medeiros et al. (2022) (Figure 
3). These examples illustrate the step-by-step use of the equations, accounting for variations in wall 
geometry, material properties, axial load, reinforcement, and grouting patterns. Tables 1 and 2 provide a 
comprehensive summary of the input parameters and calculated results for each case using the Medeiros et 
al. (2022) and Zhu et al. (2025) equations. 



(a)  (b) 

Figure 2: (a) Experimental Wall 7 Configuration (Schultz, [12]); (b) Experimental Wall 
PG085-24 Configuration (Nolph & Elgawady, [13]) 

(a)  (b) 

Figure 3: Numerical Wall 21 Configuration (Medeiros et al., [6]) 

 



Table 1: Detailed Parameters and Results for All Examples Using Medeiros et al. Equation 

PARAMETER EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 
Data ℎ௪ (𝑚𝑚) 1,422 2,337 13,200 ℎ௘  (𝑚𝑚) 711 (double-curvature wall) 2,337 (cantilever wall) 13,200 (cantilever wall) 𝑙௪ (𝑚𝑚) 2,845 2,631 7,600 𝑛௨௚௣௩ 1 4 3 𝑛௨௚௣௛ 2 2 1 ℎ௣ (𝑚𝑚) 390 590 590 𝑡௣ (𝑚𝑚) 195 194 190 𝑃ௗ  (𝑁) 266,000 49,286 37,292 𝑓௠,௚ᇱ  (𝑀𝑃𝑎) 17.6 19.7 12.2 𝑓௠,௨ᇱ  (𝑀𝑃𝑎) 17.1 11.3 11.8 𝐴௘௩ (𝑚𝑚²) 120,597 199,228 176,842 𝐴௘௛ (𝑚𝑚²) 242,283 271,612 783,158 𝐴௘௛,௚ (𝑚𝑚²) 76,824 189,150 454,737 𝐴௘௛,௨ (𝑚𝑚²) 165,459 82,462 328,421 𝐴௩ (𝑚𝑚²) 1,136 2,336 3,770 𝑓௬௩  (𝑀𝑃𝑎) 414 439 540 𝐴௛ (𝑚𝑚²) 329 200 0 𝑓௬௛ (𝑀𝑃𝑎) 414 439 540 𝑉௡,௘௫௣  (𝑘𝑁) 240 295 217.6 

Contribution of the vertical grouting 𝑠௚௩,௔௩௚ (𝑚𝑚) 2,845/1 = 2,845 2,631/4 = 658 7,600/3 = 2,533 𝑘௚௩ 5.539 − 0.583 ln(2,845) = 0.90 5.539 − 0.583 ln(658) = 1.76 5.539 − 0.583 ln(2,533) = 0.97 

Contribution of the horizontal grouting 𝑠௚௛,௔௩௚ (𝑚𝑚) 1,422/2 = 711 2,337/2 = 1,169 13,200/1 = 13,200 𝑘௚௛ 1.633 − 0.079 ln(711) = 1.11 1.11 ≥ 1.0 → OK!   1.633 − 0.079 ln(1,169) = 1.07 1.07 ≥ 1.0 → OK!   1.633 − 0.079 ln(13,200) = 0.88 0.88 ≥ 1.0 → take 1.0   
Masonry Strength Adjustment 𝑘௖ 1 − 0.058 ൬5 − 390195൰ଵ.଴଻ = 0.812 1 − 0.058 ൬5 − 590194൰ଵ.଴଻ = 0.881 1 − 0.058 ൬5 − 590190൰ଵ.଴଻ = 0.885 𝑓௠,௚∗  (𝑀𝑃𝑎) 0.812 ∙ 17.6 = 14.3 0.881 ∙ 19.7 = 17.4 0.885 ∙ 12.2 = 10.8 𝑓௠,௨∗  (𝑀𝑃𝑎) 0.812 ∙ 17.1 = 13.9 0.881 ∙ 11.3 = 9.9 0.885 ∙ 11.8 = 10.4 𝑓௠,୵∗  (𝑀𝑃𝑎) ଵସ.ଷ∙଻଺,଼ଶସ ା ଵଷ.ଽ∙ଵ଺ହ,ସହଽଶସଶ,ଶ଼ଷ  = 14.0 ଵ଻.ସ∙ଵ଼ଽ,ଵହ଴ ା ଽ.ଽ∙଼ଶ,ସ଺ଶଶ଻ଵ,଺ଵଶ  = 15.1 ଵ଴.଼∙ସହସ,଻ଷ଻ ା ଵ଴.ସ∙ଷଶ଼,ସଶଵ଻଼ଷ,ଵହ଼  = 10.6 

Contribution of the masonry ℎ௘ 𝑑௩⁄  711 2,845⁄ = 0.25 0.25 ≤ 0.25 ≤ 2.00 → 𝑂𝐾! 2,337 2,631⁄ = 0.89 0.25 ≤ 0.89 ≤ 2.00 → 𝑂𝐾! 13,200 7,600⁄ = 1.74 0.25 ≤ 1.74 ≤ 2.00 → 𝑂𝐾! 𝛽௥ 0.183 − 0.140(0.25) = 0.15 0.134 − 0.034(0.89) = 0.10 0.190 − 0.091(1.74) = 0.03 𝑉௠ (𝑁) 0.15 ∙ 242,283 ∙ √14.0 = 135,981 0.10 ∙ 271,612 ∙ √15.1 = 105,544 0.03 ∙ 783,158 ∙ √10.6 = 76,493 
Contribution of the axial load 𝑃 (𝑁) 0.9 ∙ 266,000 = 239,400 0.9 ∙ 49,286 = 44,357 0.9 ∙ 37,292 = 33,563 𝑡𝑎𝑛 𝜃 0.4(2,845/1,422) = 0.8 0.4(2,631/2,337) = 0.45 0.4(7,600/13,200) = 0.23 𝑉௣ (𝑁) 0.4 ∙ 239,400 ∙ 0.8 = 76,608 0.4 ∙ 44,357 ∙ 0.45 = 7,984 0.4 ∙ 33,563 ∙ 0.23 = 3,088 



Table 1 Continued. 

Contribution of the vertical reinforcement 𝑉௥௩(𝑁) 0.02 ∙ 1,136 ∙ 414 ∙ … … √14 = 35,194 
0.02 ∙ 2,336 ∙ 439 ∙ … … √15.1 = 79,699 

0.02 ∙ 3,770 ∙ 540 ∙ … … √10.6 = 132,562 
Contribution of the horizontal reinforcement 𝜌௛ (%) 329 120,597⁄ = 0.27 0.27 > 0.20% → 𝑡𝑎𝑘𝑒 0.20% 

200 199,228⁄ = 0.10 0.10 ≤ 0.20% → 𝑂𝐾! 0.0 176,842⁄ = 0.0 0.0 ≤ 0.20% → 𝑂𝐾! 𝑉௥௛(𝑁) 0.02 ∙ 0.0020 ∙ 120,597 ∙ … …  414 ∙ √14 = 7,472 
0.02 ∙ 0.0010 ∙ 199,228 ∙ … …  439 ∙ √15.1 = 6,797 

0.02 ∙ 0.0 ∙ 176,842 ∙ … …  540 ∙ √10.6 = 0.0 
Limit capacity 𝑉௡,௠௔௫  (𝑁) 0.4 ∙ 242,283 ∙ √14.0 = 362,615 0.4 ∙ 271,612 ∙ √15.1 = 422,179 0.4 ∙ 783,158 ∙ √10.6 = 1019,911 
Nominal DSLC 𝑉௡ (𝑘𝑁) 

0.90 ∙ 1.11 ∙ 136.0 + 76.6 +  … …  35.2 + 7.5 = 255.2 255.2 ≤ 362.6 → 𝑂𝐾! 1.76 ∙ 1.07 ∙ 105.5 + 8.0 + … …  79.7 + 6.8 = 293.2 293.2 ≤ 422.2 → 𝑂𝐾! 0.97 ∙ 1.0 ∙ 76.5 + 3.1 + … …  132.6 + 0.0 = 209.9 209.9 ≤ 1019.9 → 𝑂𝐾! 𝑉௡ 𝑉௡,௘௫௣⁄  255.2 240⁄ = 1.063 293.2 295⁄ = 0.994 209.9 217.6⁄ = 0.965 

 

Table 2: Detailed Parameters and Results for All Examples Using Zhu et al. Equation 

PARAMETER EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 
Data 𝑡௪௘௕(𝑚𝑚) 351 351 351 𝑙௕ (𝑚𝑚) 396 3902 3902 𝑙௖  (𝑚𝑚) 1422.5 1315.5 3800 𝑓௚ (𝑀𝑃𝑎) 30 29 303 𝐴௚ (𝑚𝑚²) 554,775 510,414 1,444,000 𝜎ௗ (𝑀𝑃𝑎) 0.479 0.095 0.026 𝛾௚ 242,283 554,775⁄ = 0.437 271,612 510,414⁄ = 0.532 783,158 1,444,000⁄ = 0.542 

Masonry Strength Adjustment 𝐴௧௥,௨ (𝑚𝑚²) 396 ∙ 35 ∙ 2 ∙ 2 = 55,440 390 ∙ 35 ∙ 2 ∙ 2 = 54,600 390 ∙ 35 ∙ 2 ∙ 2 = 54,600 𝑉௧௥,௨  (𝑁) 0 + 0 + 10,000 = 10,000  0 + 0 + 10,000 = 10,000 0 + 0 + 10,000 = 10,000 𝜏௧௥,௨(𝑀𝑃𝑎) 10,000/55,440 = 0.180 10,000/54,600 = 0.183 10,000/54,600 = 0.183 𝐴௧௥,௖  (𝑚𝑚²) 140 ∙ 125 ∙ 2 ∙ 2 = 70,000 140 ∙ 124 ∙ 2 ∙ 2 = 69,440 140 ∙ 120 ∙ 2 ∙ 2 = 67,200 𝑉௧௥,௚  (𝑁) 0.18 ∙ 30 ∙ 70,000 + 0 + 10,000= 388,000 
0.18 ∙ 29 ∙ 69,440 + 0 + 10,000= 372,477 

0.18 ∙ 30 ∙ 70,000 + 0 + 10,000= 388,000 𝐴௧௥,௚ (𝑚𝑚²) 396 ∙ 195 ∙ 2 = 154,440 390 ∙ 194 ∙ 2 = 151,320 390 ∙ 190 ∙ 2 = 148,200 𝜏௧௥,௚(𝑀𝑃𝑎) 388,000/154,440 = 2.512 372,477/151,320 = 2.462 388,000/148,200 = 2.618 𝑓௩௢ (𝑀𝑃𝑎) (2.512 − 0.180)(0.437) + 0.180= 1.199 
(2.462 − 0.183)(0.532) + 0.183= 1.395 

(2.618 − 0.183)(0.542) + 0.183= 1.503 
Contribution of the masonry 

    𝑡௣𝑙௖𝛾௚(𝑚𝑚²) 195 ∙ 1422.5 ∙ 0.437 = 121,218 194 ∙ 1315.5 ∙ 0.532 = 135,770 190 ∙ 3800 ∙ 0.542 = 391,324 𝑉௠ (𝑁) 0.8 ∙ 1.199 ∙ 1 ∙ 121,218= 116,272 
0.8 ∙ 1.395 ∙ 1 ∙ 135,770= 151,519 

0.8 ∙ 1.503 ∙ 1 ∙ 391,324= 470,527 
 



Table 2 Continued. 

Contribution of the axial load 𝑉௣ (𝑁) 0.8 ∙ 0.479 ∙ 1 ∙ 121,218 = 46,451 0.8 ∙ 0.095 ∙ 1 ∙ 135,770 = 10,319 0.8 ∙ 0.026 ∙ 1 ∙ 391,324 = 8,140 
Contribution of the horizontal steel 𝑉௥௛(𝑁) 0.9 ∙ 329 ∙ 414 = 122,585 0.9 ∙ 200 ∙ 439 = 79,020 0.9 ∙ 0 ∙ 540 = 0 

Nominal DSLC 𝑉௡ (𝑁) 116,272 + 46,451 + 122,585= 285,308 
151,519 + 10,319 + 79,020= 240,858 470,527 + 8,140 + 0 = 478,667 𝑉௡ (𝑘𝑁) 285.3 240.9 478.7 𝑉௡ 𝑉௡,௘௫௣⁄  285.3 240⁄ = 1.189 240.9 295⁄ = 0.817 478.7/217.6 = 2.200 

Note: 

1. The web thickness was not specified in the source; therefore, it was assumed to be 35 mm as a 
commonly used unit in North America. 

2. The block length was not specified in the source; therefore, it was assumed to be 390 mm as a 
commonly used unit in North America. 

3. The grout strength was not specified in the source; therefore, it was assumed to be similar to the 
previous examples. 

ANALYSIS 
The TMS 402/602 [1] and CSA S304 standards define a maximum allowable spacing of 3,048 mm and 
2,400 mm, respectively, between vertical grouted/reinforced cells for ordinary/conventional masonry shear 
walls. If this spacing is exceeded, the wall is classified as ungrouted/unreinforced. For more critical seismic 
categories, the maximum spacing is reduced to approximately 1,200 mm in both standards. In the Medeiros 
et al. equation, the kgv factor adjusts the masonry contribution to the DSLC, as in Eq.1, varying according 
to the spacing between vertical grouted cells, as indicated in Eq. 3. Specifically, longer spacings result in 
lower kgv values, while shorter spacings yield higher kgv ones. At a spacing of 2,400 mm, the kgv value equals 
1.0, indicating no change in the masonry contribution to the DSLC. However, spacings greater than 2,400 
mm, as demonstrated in Examples 1 and 3, yield a kgv < 1.0, diminishing the masonry's contribution. 
Conversely, spacings shorter than 2,400 mm, as seen in Example 2, lead to a kgv > 1.0, enhancing the 
masonry contribution to the DSLC. This adjustment reflects the unique behavior of PGMW, understanding 
that as the spacing between vertical grouted cells increases, the wall's structural performance gradually 
resembles that of ungrouted walls, while shorter spacings lead to behavior closer to fully grouted walls.  

The shear span ratio (ℎ௘ 𝑑௩⁄ ) varies across the examples, directly affecting the 𝛽௥ factor (Eq. 10) and the 
masonry contribution (𝑉௠) (Eq. 11) to the DSLC. The decrease in 𝛽௥ with increasing ℎ௘ 𝑑௩⁄  reflects the 
diminishing role of masonry in shear resistance as the wall geometry shifts the load-bearing mechanism 
toward other modes. In Example 1, ℎ௘ 𝑑௩⁄  = 0.25 results in 𝛽௥ = 0.15, indicating a higher contribution of 
masonry to the DSLC. In Example 2, ℎ௘ 𝑑௩⁄  = 0.89 provides 𝛽௥ = 0.10, showing a moderate reduction in 
the masonry contribution. In Example 3, ℎ௘ 𝑑௩⁄  = 1.74 leads to 𝛽௥ = 0.03, significantly reducing 𝑉௠ due to 
the increased shear span. As the shear span ratio increases, the failure mode of the wall tends to shift from 
shear to flexure: to account for this behavior, the proposed equation establishes an upper limit for ℎ௘ 𝑑௩⁄  at 
2.0, beyond which the wall is predominantly governed by flexural mechanisms rather than shear. 

Compared to the Medeiros et al. equation, the Zhu et al. equation has bigger discrepancies between the 
predicted and actual peak loads. One reason could be the database from which the equation was generated, 
wherein the walls were limited to aspect ratios from 1.0 to 1.9, with only 2 walls with aspect ratio of 1.9. 



Not surprisingly, this model had better performance in walls with lower aspect ratios. In addition, key 
information was missing from a few examples, such as web thickness, block length, or grout strength. By 
comparing the two equations, it is suggested that having a limiting condition to the contribution of each 
factor might be necessary. For example, horizontal reinforcement in single-course bond beams has been 
shown not to affect the shear strength of a wall beyond a certain limit [13]. It could be that some combination 
of the two equations will provide even better predictions than either alone. 

CONCLUSIONS AND RECOMMENDATIONS 
In this paper, two recently proposed equations for predicting the diagonal shear load capacity of partially 
grouted masonry shear walls have been explained and discussed. Detailed instructions on how to apply 
these equations have been provided using two experimental test examples and one numerical example from 
the literature. Further testing will be conducted to analyze the advantages and limitations of each equation, 
offering deeper insights into our understanding of the shear failure of PGMW and assisting standards 
committees in their decision-making process. 
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