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ABSTRACT 
Numerical modelling is a critical part of structural and seismic evaluations, particularly for existing 
unreinforced masonry (URM) structures built without mortar or exhibiting mortar-loss (i.e., dry-joint). 
Discontinuum methods are typically used for simulating the failure and collapse behaviours of dry-joint 
URM; however, such refined computational solutions often require excessive analysis times. An 
underexplored alternative for structural analysis of dry-joint URM is the use of physics engines, 
computational tools that present surprising conceptual similarities with DEM but are primarily used in 
animation and videogame industries for visually credible simulations. While these techniques feature 
exceptional computational speed when simulating rigid body collisions (i.e., contact, separation, and re-
contact), they have yet to be rigorously scrutinized for URM structural analysis. This study explores the 
capabilities of PyBullet, a Python-based module operating the well-known, open-source Bullet Physics 
engine, in replicating the out-of-plane (OOP) collapse behaviour of dry-joint URM assemblies and full-
scale constructions. Preliminary results indicate that PyBullet models can accurately predict the typical 
failure and collapse modes observed during experimental testing. However, the implicit Coulomb friction 
cone model utilized for simulating joint slip underestimates the angle of collapse during OOP 
tilting.  Response predictions obtained using PyBullet are overall in agreement with previous experimental 
and traditional discontinuum results, but require significantly less time to complete, making them a 
promising alternative for complex URM discontinuum analysis.  
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INTRODUCTION 
Assessing seismic collapse mechanisms and post-failure consequences of unreinforced masonry (URM) 
structures is essential for predicting loss assessment due to natural hazards (e.g., earthquakes floods, 
landslides) and advising disaster preparedness (e.g., assessing road accessibility for emergency vehicles). 
Seismic collapse analysis of URM [1] is typically accomplished using numerical modelling, notably 
discontinuum methods (e.g., the Distinct Element Method (DEM) [2], the Applied Element Method (AEM) 
[3], and Non-Smooth Contact Dynamics (NSCD) [4]) which are now regarded as the leading analysis 
techniques for URM [5]. These methods are distinguished in their ability for simulating large 
displacements, contact, separation, and re-contact of discrete units (i.e., masonry). Consequently, these 
methods are capable of comprehensive representation of out-of-plane (OOP) URM collapse phenomena 
but necessitate impractical analysis times [6] and technical prerequisites that are unsuitable for practical 
engineering and research settings.  

An emerging discontinuum method is the use of physics engines – computer graphics simulation platforms 
developed for visually credible 3D animation applications (e.g., videogames, movies). Physics engines 
employ a contact mechanics algorithm that shares key features with that of discontinuum methods (e.g., 
point-contact constitutive models, collision detection processes, time-stepping scheme). However, their 
more efficient formulation and implementation of distinctive numerical solutions (e.g., use of direct solvers, 
GPU computing resources, compliance with kinematic and geometrical constraints) allows for unrivaled 
computational speed and unconditional stability – key for fast, real-time simulations that are presently 
unachievable with standard discontinuum methods. Current applications of physics engines for URM 
analysis are limited in quantitative validations of mechanical outputs (i.e., numerical comparisons of forces 
and displacements) [7] but demonstrate proof of concept (i.e., exhibiting realistic crack propagation and 
damage patterns) for rigorous structural analysis of complex URM assemblies (e.g., walls, arches, full-scale 
structures).  

To further comprehend and examine the capabilities of physics engines for URM analysis, we explore the 
novel application of PyBullet, a Python module operating the open-source Bullet Physics engine [8], in 
reproducing the OOP collapse mechanisms of dry-joint URM assemblies and buildings. Dry-joint URM 
structures are representative of existing building stock experiencing mortar degradation or historical 
constructions – thus, the accurate simulation of these constructions is critical for informing structural 
assessment and retrofit. OOP collapse mechanisms are of particular interest as they are often the “first-
mode damage mechanism” in seismic collapse of historical (i.e., dry-joint) URM – in-plane (IP) failures 
are common as “second mode damage mechanisms” [9]. Discontinuum analysis of dry-joint constructions 
typically feature meso-scale representations of URM assemblies with Mohr-Coulomb no-tension/infinite 
compression relationships at the contact interfaces [10]. Numerous studies have validated such simulations 
using DEM and NSCD (to the authors’ knowledge, no implementations of AEM for exclusively dry-joint 
URM are found in literature). DEM, despite its sensitivity to time-step size and conditional stability, has 
effectively replicated experimental OOP overturning collapse mechanisms observed during quasi-static 
tilting tests [11]. Similarly, NSCD – a non-smooth model featuring Signorini’s impenetrability condition 
(comparable to hard contact models in physics engines) – has reproduced OOP “rotation-like” mechanisms 
during seismic simulations of  a full-scale URM church [12] (albeit with loss of geometric fidelity in 
exchange for computational cost). These studies provide an existing suite of trusted discontinuum models 
to validate our unconventional use of PyBullet for URM analysis. PyBullet was the selected physics engine 
for its accessibility with engineers (i.e., Python is a high-level coding language with extensive 
documentation) – contact formulations used in PyBullet and similar engines are discussed in Section 2. The 
outcomes from this study (Section 3) will support the potential of calibrated and improved physics engines 



as a rigorously validated numerical modelling approach that can address the current shortcomings of 
discontinuum techniques.  

PHYSICS ENGINE CONTACT MECHANICS 
This section presents a high-level overview of rigid body contact mechanics in physics engines, highlighting 
their unique numerical parameters and their influence on mechanical output. For appropriate comparisons 
with discontinuum modelling, readers are referred to Malomo and Pulatsu (2024) [13] for respective contact 
formulations and applications thereof. The following equations and notation are adopted from Andrews et 
al. (2022) [14].  

Time discretization in physics engines is typically represented as frames per second, 𝐹𝑃𝑆, the rate at which 
the system can generate frames (i.e., proceed to the next time increment). This metric is typically manually 
specified (adaptive time-stepping is favoured in DEM, in contrast) and dependent on the preferred visual 
fidelity of the simulation – a faster (up to 60 fps) 𝐹𝑃𝑆 for real-time, first-person videogames and a slower 
(< 30 fps) 𝐹𝑃𝑆 for 3D animations. Time increments can also be divided further into 𝑛௦ sub-steps, which 
are not visually rendered but contribute to calculating the actual time-step, ∆𝑡 (Eqn. Error! Reference 
source not found.), used in the time integration scheme. Physics engines also typically prefer implicit time-
stepping (opposed to explicit integration schemes in DEM) for their numerical stability at larger (magnitude 10ିଶ 𝑠) time-steps (favoured for high-speed, real-time simulations that require unconditional stability).  

(1) ∆𝑡 = ଵೞ∙ிௌ 
Collision detection processes are run at each time-step, ℎ, to identify rigid bodies that are currently in 
contact. For efficiency, physics engines will separate the collision detection pipeline into two phases: (i) 
broad phase, where simple shapes (e.g., boxes, spheres) are used to eliminate objects that are definitely not 
in contact, and (ii) narrow-phase, where possible collisions are reduced using more complex shapes (e.g., 
convex hull, mesh-based geometries). Techniques such as using a collision margin (buffers around the 
specified collision shape) and continuous collision detection (CCD) can also be implemented to catch edge 
cases (e.g., edge-edge intersections) and prevent artificial tunneling (i.e., fast moving objects passing 
through each other). Critical outputs from the collision detection phase that are passed to subsequent stages 
(i.e., equations of motion) include: discrete contact points and their global position, 𝒒, a contact normal 
direction, 𝒏ෝ, to inform how bodies should move to avoid further inter-penetration, and a penetration (i.e., 
gap) measure, 𝜓(𝒒), describing the gap or penetration between two bodies. 

Once contact is established, physics engines then proceed with implementing the Newton-Euler equations 
of motion – typically solved at the velocity-level (compared to the displacement-level in DEM). These 
equations of motion are presented as a second-order ordinary differential equation (ODE), with the 
following system inputs: the system masses 𝑴 ∈ ℝ×, their respective velocities 𝒖 ∈ ℝ, and a function 𝑭 that defines the applied forces on the system for each degree of freedom 𝑛. Using a first-order Taylor 
expansion of the implicit velocities, 𝒖ା ≈ 𝒖 + Δ𝑡𝒖ሶ  (the superscript + denotes implicit quantities), the rigid 
body kinematics of the system can be represented as a linear equation (Eqn. Error! Reference source not 
found.). 

(2) 𝑴𝒖ା = 𝑴𝒖 + 𝑭∆𝑡 
Boundary conditions and non-interpenetration requirements in physics engines are implemented through 
the application of constraint equations, 𝜓(𝒒) ∈ ℝ, where 𝑚 is the number of constraints. The forces 
needed to impose these constraints have a magnitude 𝜆 and a direction determined by the constraint 



gradient, 𝑱 ∈ ℝ× (assumed to be constant throughout the time-step) (Eqn. Error! Reference source not 
found.).  

(3) 𝑱 = డట(𝒖)డ𝒖  

The contact (i.e., constraint) force in the normal direction is applied as a non-interpenetration impulse, 
where the magnitude 𝜆ොା ∈ ℝ is defined by a “push-only” spring-dashpot applied at the contact point 
with contact stiffness 𝑘 and damping 𝑐. The implicit formulation of this impulse (Eqn. Error! Reference 
source not found. has a linear relationship with the relative displacement between the bodies (𝜓ା). As 
shown in Figure 1, the magnitude of the normal contact impulse is also dependent on the relative normal 
velocity between the bodies, 𝑣ොା. A greater contact impulse is required to prevent further overlap if the 
bodies are expected to continue penetrating in the next time step (i.e., 𝑣ොା < 0) and a smaller or zero-
magnitude impulse is applied if the bodies are in constant contact (i.e., 𝑣ොା = 0) or moving away from 
each other (i.e., 𝑣ොା > 0). No contact normal impulse is applied if the bodies are not in contact (i.e., zero 
tensile strength, 𝑓௧ = 0).  

(4) λොା = −𝑘𝜓ା − 𝑐𝑣ොା 

 

Figure 1: Typical physics engine point contact model and interface constitutive laws 
(expressed in the stress-displacement domain) for shear-compression and normal tension 

and compression  

Shear contact impulses, 𝜆௧መ  , follow Coulomb assumptions of planar dry friction such that the maximum 
shear impulse magnitude at slipping (i.e., non-zero relative shear displacement) is capped at 𝜆௧መା =𝜆ො  𝑡𝑎𝑛 𝜙 (where 𝜙 is the friction angle). Assuming perfectly isotropic Coulomb friction (which can be 
visually represented with a “friction cone”) (Figure 1), the direction of the shear impulse ensures that energy 
is maximally dissipated. Numerical errors (if present) in the friction model can be attributed to their 
coupling with contact normal impulses (which is dependent on contact stiffness and damping) and/or 
linearized approximation of the friction problem (for numerical efficiency, e.g., polyhedral cone 
approximation [15], [16], box approximation [14]) (Figure 1).  

Once contact impulses have been determined, the equations of motion for the complete multibody system 
can be expressed as follows: 



(5) ቈ𝑴 −𝑱𝑻𝑱 𝚺  ቈ𝒖ሶ ା𝛌ା = ቈ 𝑴𝒖ሶ + ∆𝑡𝒇−𝚼 𝝍∆௧ − 𝚬𝑱𝒖ሶ  
Matrices 𝚺 and 𝚼 contain the constraint force mixing (CFM) and error reduction parameters (ERP) for each 
constraint 𝑚. The CFM introduces artificial compliance to the system (i.e., allowing flexibility for violating 
constraints), and the ERP determines fraction of the constraint error (𝜓ା) that is resolved in the next time-
step. These constraint stabilization parameters are a product of the spring-dashpot non-interpenetrative 
contact model and can be tuned using Δ𝑡, 𝑘, and 𝑐 (or sometimes directly specified as an input). The matrix 
E contains the coefficients of restitution (which are accounted for while solving for kinematic constraints 
– typically 0). The physics engine’s chosen solver – e.g., pivoting methods (which can find an exact solution 
using a direct solver), iterative methods (which find an approximate solution using iterations) – is then used 
to find the system velocities at the next time-step, 𝒖ା from Eqn. Error! Reference source not found.). 
Bullet Physics implements the Projected Gauss-Seidel iterative solver. The rigid body positions, 𝒒, are then 
updated using 𝒒ା = 𝒒 + Δ𝑡𝑺𝒖ା, where 𝑺 maps the angular velocities in 𝒖ା to their respective quaternion 
orientations.  

OUT-OF-PLANE COLLAPSE ANALYSIS 
The analyses presented in this section were run using Python version 3.12 and PyBullet version 3.2.6 [8] 
on a Dell Precision 7865 Tower PC equipped with an AMD Ryzen Threadripper CPU. Select constructions 
from experimental OOP tilting tests by Restrepo-Vélez et al. (2014) [9] that were modelled using DEM by 
Bui et al. (2017) [11] were replicated in the PyBullet simulation environment (naming conventions from 
Restrepo-Velez et al. are used herein). Experimental assemblies were constructed of masonry blocks with 
dimensions 80 mm × 40 mm × 30 mm and density 2680 kg/m3 and wood lintels/joists (if present) with a 
density of 160 kg/m3. Specimens included C-walls of varying aspect ratios and a two-story building – exact 
configurations and dimensions can be found in Restrepo-Vélez et al. (2014) [9].  

The tilting apparatus in PyBullet was constructed by using the p.createMultiBody function to join two rigid 
plates of dimensions 1200 mm × 800 mm × 10 mm at the edge with a hinge constraint (i.e., rotation OOP 
is only degree of freedom). All rigid bodies, including the masonry units, in the simulation used the box 
collision shape. A narrow support half the height of a single URM unit was fixed with respect to the top 
tilting plate to prevent the structure from sliding off. Like in the DEM simulations, a friction coefficient of 
0.67 – the minimum experimentally found coefficient – was used between the masonry joints (a coefficient 
of 0.4 was used between wood and masonry). Through preliminary simulations, the authors observed that 
variation in the friction coefficient had a minimal effect on tilting angle at collapse (±1°). Gravity was set 
to -9.8 m/s2, and the simulation was manually stepped using p.stepSimulation. Each model commenced 
with at least 2 seconds of purely gravity loads to ensure equilibrium. For quasi-static tilting, the apparatus 
was rotated at a rate of 1 degree/s until near collapse (1-2 degrees prior to expected collapse), where the 
rotation rate was slowed to the experimental rate of 0.045 degree/s. Additional physics engine parameters 
used are shown in  
Table 1. While the CFM parameter was not exposed in the PyBullet user interface, the ERP could be 
specified on a scale from 0 to 1 – the fraction of the positional error to be corrected in the next time-step.  

Table 1: PyBullet simulation parameters 

Time-step Sub-steps* Solver 
iterations 

Contact 
stiffness 

Contact 
damping ERP Coefficient of 

restitution 
[s] [–] [–] [N/m] [Ns/m] [–] [–] 

0.001 0 10 109 10 0.95 0 



*S42 construction used 3 sub-steps for stability 

Assemblies under out-of-plane tilting 
Assemblies simulated under OOP tilting can be grouped into three categories: interior collapse C-walls (S1-
3, 5, and 6), exterior collapse C-walls (S7, 8-9, 10), and C-walls with an interior partition. The observed 
failure mechanisms and collapse progression can be shown in Figure 2, Figure 3, and Figure 4 for each 
category, respectively. As expected from DEM models and experimental results, the PyBullet simulations 
of the interior collapse C-walls exhibited collapse mechanism G (see [17] for detailed descriptions of 
collapse mechanisms referenced herein) – characterized as a central trapezoidal portion of the façade 
displacing and rotating outwards. Exterior collapse C-walls reproduced collapse mechanism A (i.e., 
overturning of the main wall) with the overturning portion hinging around the center of the wall. Specimen 
22, C-wall with openings and an interior partition, exhibited a B2 collapse mechanism (i.e., overturning of 
the façade and portions of the orthogonal walls). Mechanisms A and B2 also feature diagonal cracking on 
the orthogonal walls (secondary IP shear-compression failure). 

Collapse was herein defined as a local or global severe damage limit state or post-failure condition when 
(i) components lose their ability to withstand vertical load and (ii) units or components/assemblies dislocate 
and start interacting dynamically [1]. The critical angle at collapse (𝜑) was defined as the rotational 
displacement where block behaviour fit the aforementioned definition of collapse – this was identified 
through visual observation of the collapse progression. While 𝜑 was underestimated in PyBullet (as much 
as -40%) for all specimens, there was an overall decreasing trend of 𝜑 while the length/height aspect ratio 
increased (Table 2), which is in agreement with experimental and DEM results. This underestimation is 
likely attributed to excessive block slipping which can be a product of the coupling between contact normal 
and friction impulses. This is especially evident in S22, where the lintels lose frictional resistance and lead 
to IP failure in the orthogonal walls and loss of connection with the façade. Unexpected rotations of blocks 
near the structure base are also observed, which can be attributed to the engine attempting to adhere to the 
non-interpenetration constraints. Conversely, DEM typically overestimated experimental critical angles (up 
to +15.32%) for interior walls and underestimated (up to -9.25%) for exterior walls. 



 

Figure 2: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9] 
for interior collapse C-walls (specimens S1, 2, 3, 5, 6) 

 

Figure 3: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9] 
for the exterior collapse C-walls (specimens S7, 8, 9, 10) 



 

Figure 4: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9] 
for specimen S22 (C-wall with partition) 

Table 2: Comparison of critical angle for PyBullet, DEM [11], and experimental tests [9] 

Specimen S1 S2 S3 S5 S6 S7 S8 S9 S10 S22 S42 

Aspect Ratio, L/H 1.5 1.5 1.5 1.09 1.77 1.088 0.816 0.816 1.633 - - 

C
ri

tic
al
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ng

le
 

φ c
r [

°]
 

PyBullet 10.85 - - 15.41 9.20 12.56 16.16 - 9.79 7.62 9.07 

DEM 14.68 - - 18.11 12.30 16.01 18.06 - 12.46 10.54 11.09 

Experimental 14.25 12.73 13.71 19.24 11.75 16.22 19.90 19.39 12.02 11.14 13.28 

 

Buildings under out-of-plane tilting 
A two-story URM construction (S42) of dimensions 800 mm × 1040 mm × 1260 mm was also tested under 
OOP tilting (Figure 5). A set of wood joists were used to simulate the slabs with vertical reactions of 16.46 
N applied at the end of each joist in the form of an equivalent density block. Eight openings are present 
(four on each story), each with a lintel on top. Due to the scale of the simulation, the number of sub-steps 
was increased to 3 for numerical stability (fewer sub-steps led to erroneous large displacements). Similar 
to specimen S22, this specimen exhibited the B2 collapse mechanism however with hinging at the height 
midpoint instead of the base (this contrasts with the experimental test which exhibited asymmetrical rotation 
of the façade). As the joists were free to move axially, shear resistance in the orthogonal direction was 
similarly governed by lintels – which can contribute to an underestimation (-34%) of the collapse angle. 
Nevertheless, diagonal shear cracking near the openings was still observed across both numerical models 
prior to collapse. 



 

Figure 5: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9] 
for specimen S42  

Computational speeds for all simulations are shown in Table 3. As expected, the execution time increased 
as the number of rigid bodies in the system increased – similarly observed by Hamano et al. (2016) [18] for 
simulations using Bullet CPU. Increasing the tilting rate to 1 deg/s (for pre-collapse angles) greatly 
improved execution times. Although computational times for URM assemblies did not exceed 20 minutes, 
specimen S42 required 5.25 hours. However, it’s acknowledged that this model had significantly more 
time-steps and over double the amount of rigid bodies. Computational difficulties may also arise from the 
high stiffness of the system (i.e., numerous rigid bodies stacked on top of each other) leading to issues with 
the numerical solver. Although respective DEM computational times are not reported, comparably sized 
models (with URM assemblies) can take up to 30 minutes to complete (based on authors’ own experience). 
While further investigation of the model’s sensitivity (regarding numerical efficiency and mechanical 
output) to selected inputs is warranted, this study confirms PyBullet’s capability to simulate OOP behaviour 
beyond near collapse at a meso-scale discretization with practical execution times.  

Table 3: PyBullet execution times 

Specimen S1,2,3 S5 S6 S7 S8,9 S10 S22 S42 
Aspect Ratio, L/H 1.5 1.09 1.77 1.088 0.816 1.633 - - 

No. blocks 387 324 429 450 408 660 846 1826 
Execution Time (min) 6.61 7.11 10.06 15.42 16.1 11.77 19.51 315.47 

CONCLUSIONS 
Initial exercises of quasi-static OOP tilting using PyBullet support the feasibility of physics engines for 
quantitative URM structural analysis. Although critical angles were underestimated, expected collapse 
mechanisms G, A, and B2 were largely reproduced – modifications to the friction and shear contact models 
in future studies can address conservative predictions of critical angle. Additional tests of different 
specimens (e.g., aspect ratio, number of blocks) and loading conditions (e.g., IP shear-compression, 
settlements, seismic loading) are necessary to further uncover capabilities and limitations of physics 
engines. Key considerations from this study include:  

• The default isotropic Coulomb friction model embedded in PyBullet underestimates the shear 
contact forces leading to premature slipping in the joints. 

• Additional studies into the direct effects of the physics engine parameters on mechanical behaviour 
are needed to fully understand the simulation’s contact model.  



• Loading schemes such as dynamic and cyclic testing have yet to be explored using PyBullet – 
findings therein can confirm constitutive laws under loading and un-loading conditions.  

• Computational times are practical (under 20 minutes) for URM assemblies but can be improved 
using GPU computing resources or more efficient numerical solvers in the contact formulation. 
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