
15th Canadian Masonry Symposium
Ottawa, Canada
June 2-5, 2025

Videogame-Inspired Out-of-Plane Collapse Analysis of Dry-Joint
Masonry Structures

Anna Wangi, Bora Pulatsuii, Sheldon Andrewsiii, and Daniele
Malomoiv

ABSTRACT
Numerical modelling is a critical part of structural and seismic evaluations, particularly for existing
unreinforced masonry (URM) structures built without mortar or exhibiting mortar-loss (i.e., dry-joint).
Discontinuum methods are typically used for simulating the failure and collapse behaviours of dry-joint
URM; however, such refined computational solutions often require excessive analysis times. An
underexplored alternative for structural analysis of dry-joint URM is the use of physics engines,
computational tools that present surprising conceptual similarities with DEM but are primarily used in
animation and videogame industries for visually credible simulations. While these techniques feature
exceptional computational speed when simulating rigid body collisions (i.e., contact, separation, and re-
contact), they have yet to be rigorously scrutinized for URM structural analysis. This study explores the
capabilities of PyBullet, a Python-based module operating the well-known, open-source Bullet Physics
engine, in replicating the out-of-plane (OOP) collapse behaviour of dry-joint URM assemblies and full-
scale constructions. Preliminary results indicate that PyBullet models can accurately predict the typical
failure and collapse modes observed during experimental testing. However, the implicit Coulomb friction
cone model utilized for simulating joint slip underestimates the angle of collapse during OOP
tilting. Response predictions obtained using PyBullet are overall in agreement with previous experimental
and traditional discontinuum results, but require significantly less time to complete, making them a
promising alternative for complex URM discontinuum analysis.

KEYWORDS
Discontinuum analysis, unreinforced masonry, physics engines, PyBullet, dry-joint, collapse

i PhD student, McGill University, Montréal, Canada, anna.h.wang@mail.mcgill.ca
ii Assistant Professor, Carleton University, Ottawa, Canada, bora.pulatsu@carleton.ca
iii Associate Professor, École de Technologie Supérieure (ÉTS), Montréal, Canada, sheldon.andrews@etsmtl.ca
iv Assistant Professor, McGill University, Montréal, Canada, daniele.malomo@mcgill.ca

INTRODUCTION
Assessing seismic collapse mechanisms and post-failure consequences of unreinforced masonry (URM)
structures is essential for predicting loss assessment due to natural hazards (e.g., earthquakes floods,
landslides) and advising disaster preparedness (e.g., assessing road accessibility for emergency vehicles).
Seismic collapse analysis of URM [1] is typically accomplished using numerical modelling, notably
discontinuum methods (e.g., the Distinct Element Method (DEM) [2], the Applied Element Method (AEM)
[3], and Non-Smooth Contact Dynamics (NSCD) [4]) which are now regarded as the leading analysis
techniques for URM [5]. These methods are distinguished in their ability for simulating large
displacements, contact, separation, and re-contact of discrete units (i.e., masonry). Consequently, these
methods are capable of comprehensive representation of out-of-plane (OOP) URM collapse phenomena
but necessitate impractical analysis times [6] and technical prerequisites that are unsuitable for practical
engineering and research settings.

An emerging discontinuum method is the use of physics engines – computer graphics simulation platforms
developed for visually credible 3D animation applications (e.g., videogames, movies). Physics engines
employ a contact mechanics algorithm that shares key features with that of discontinuum methods (e.g.,
point-contact constitutive models, collision detection processes, time-stepping scheme). However, their
more efficient formulation and implementation of distinctive numerical solutions (e.g., use of direct solvers,
GPU computing resources, compliance with kinematic and geometrical constraints) allows for unrivaled
computational speed and unconditional stability – key for fast, real-time simulations that are presently
unachievable with standard discontinuum methods. Current applications of physics engines for URM
analysis are limited in quantitative validations of mechanical outputs (i.e., numerical comparisons of forces
and displacements) [7] but demonstrate proof of concept (i.e., exhibiting realistic crack propagation and
damage patterns) for rigorous structural analysis of complex URM assemblies (e.g., walls, arches, full-scale
structures).

To further comprehend and examine the capabilities of physics engines for URM analysis, we explore the
novel application of PyBullet, a Python module operating the open-source Bullet Physics engine [8], in
reproducing the OOP collapse mechanisms of dry-joint URM assemblies and buildings. Dry-joint URM
structures are representative of existing building stock experiencing mortar degradation or historical
constructions – thus, the accurate simulation of these constructions is critical for informing structural
assessment and retrofit. OOP collapse mechanisms are of particular interest as they are often the “first-
mode damage mechanism” in seismic collapse of historical (i.e., dry-joint) URM – in-plane (IP) failures
are common as “second mode damage mechanisms” [9]. Discontinuum analysis of dry-joint constructions
typically feature meso-scale representations of URM assemblies with Mohr-Coulomb no-tension/infinite
compression relationships at the contact interfaces [10]. Numerous studies have validated such simulations
using DEM and NSCD (to the authors’ knowledge, no implementations of AEM for exclusively dry-joint
URM are found in literature). DEM, despite its sensitivity to time-step size and conditional stability, has
effectively replicated experimental OOP overturning collapse mechanisms observed during quasi-static
tilting tests [11]. Similarly, NSCD – a non-smooth model featuring Signorini’s impenetrability condition
(comparable to hard contact models in physics engines) – has reproduced OOP “rotation-like” mechanisms
during seismic simulations of a full-scale URM church [12] (albeit with loss of geometric fidelity in
exchange for computational cost). These studies provide an existing suite of trusted discontinuum models
to validate our unconventional use of PyBullet for URM analysis. PyBullet was the selected physics engine
for its accessibility with engineers (i.e., Python is a high-level coding language with extensive
documentation) – contact formulations used in PyBullet and similar engines are discussed in Section 2. The
outcomes from this study (Section 3) will support the potential of calibrated and improved physics engines

as a rigorously validated numerical modelling approach that can address the current shortcomings of
discontinuum techniques.

PHYSICS ENGINE CONTACT MECHANICS
This section presents a high-level overview of rigid body contact mechanics in physics engines, highlighting
their unique numerical parameters and their influence on mechanical output. For appropriate comparisons
with discontinuum modelling, readers are referred to Malomo and Pulatsu (2024) [13] for respective contact
formulations and applications thereof. The following equations and notation are adopted from Andrews et
al. (2022) [14].

Time discretization in physics engines is typically represented as frames per second, 𝐹𝑃𝑆, the rate at which
the system can generate frames (i.e., proceed to the next time increment). This metric is typically manually
specified (adaptive time-stepping is favoured in DEM, in contrast) and dependent on the preferred visual
fidelity of the simulation – a faster (up to 60 fps) 𝐹𝑃𝑆 for real-time, first-person videogames and a slower
(< 30 fps) 𝐹𝑃𝑆 for 3D animations. Time increments can also be divided further into 𝑛௦ sub-steps, which
are not visually rendered but contribute to calculating the actual time-step, ∆𝑡 (Eqn. Error! Reference
source not found.), used in the time integration scheme. Physics engines also typically prefer implicit time-
stepping (opposed to explicit integration schemes in DEM) for their numerical stability at larger (magnitude 10ିଶ 𝑠) time-steps (favoured for high-speed, real-time simulations that require unconditional stability).

(1) ∆𝑡 = ଵೞ∙ிௌ
Collision detection processes are run at each time-step, ℎ, to identify rigid bodies that are currently in
contact. For efficiency, physics engines will separate the collision detection pipeline into two phases: (i)
broad phase, where simple shapes (e.g., boxes, spheres) are used to eliminate objects that are definitely not
in contact, and (ii) narrow-phase, where possible collisions are reduced using more complex shapes (e.g.,
convex hull, mesh-based geometries). Techniques such as using a collision margin (buffers around the
specified collision shape) and continuous collision detection (CCD) can also be implemented to catch edge
cases (e.g., edge-edge intersections) and prevent artificial tunneling (i.e., fast moving objects passing
through each other). Critical outputs from the collision detection phase that are passed to subsequent stages
(i.e., equations of motion) include: discrete contact points and their global position, 𝒒, a contact normal
direction, 𝒏ෝ, to inform how bodies should move to avoid further inter-penetration, and a penetration (i.e.,
gap) measure, 𝜓(𝒒), describing the gap or penetration between two bodies.

Once contact is established, physics engines then proceed with implementing the Newton-Euler equations
of motion – typically solved at the velocity-level (compared to the displacement-level in DEM). These
equations of motion are presented as a second-order ordinary differential equation (ODE), with the
following system inputs: the system masses 𝑴 ∈ ℝ×, their respective velocities 𝒖 ∈ ℝ, and a function 𝑭 that defines the applied forces on the system for each degree of freedom 𝑛. Using a first-order Taylor
expansion of the implicit velocities, 𝒖ା ≈ 𝒖 + Δ𝑡𝒖ሶ (the superscript + denotes implicit quantities), the rigid
body kinematics of the system can be represented as a linear equation (Eqn. Error! Reference source not
found.).

(2) 𝑴𝒖ା = 𝑴𝒖 + 𝑭∆𝑡
Boundary conditions and non-interpenetration requirements in physics engines are implemented through
the application of constraint equations, 𝜓(𝒒) ∈ ℝ, where 𝑚 is the number of constraints. The forces
needed to impose these constraints have a magnitude 𝜆 and a direction determined by the constraint

gradient, 𝑱 ∈ ℝ× (assumed to be constant throughout the time-step) (Eqn. Error! Reference source not
found.).

(3) 𝑱 = డట(𝒖)డ𝒖

The contact (i.e., constraint) force in the normal direction is applied as a non-interpenetration impulse,
where the magnitude 𝜆ොା ∈ ℝ is defined by a “push-only” spring-dashpot applied at the contact point
with contact stiffness 𝑘 and damping 𝑐. The implicit formulation of this impulse (Eqn. Error! Reference
source not found. has a linear relationship with the relative displacement between the bodies (𝜓ା). As
shown in Figure 1, the magnitude of the normal contact impulse is also dependent on the relative normal
velocity between the bodies, 𝑣ොା. A greater contact impulse is required to prevent further overlap if the
bodies are expected to continue penetrating in the next time step (i.e., 𝑣ොା < 0) and a smaller or zero-
magnitude impulse is applied if the bodies are in constant contact (i.e., 𝑣ොା = 0) or moving away from
each other (i.e., 𝑣ොା > 0). No contact normal impulse is applied if the bodies are not in contact (i.e., zero
tensile strength, 𝑓௧ = 0).

(4) λොା = −𝑘𝜓ା − 𝑐𝑣ොା

Figure 1: Typical physics engine point contact model and interface constitutive laws
(expressed in the stress-displacement domain) for shear-compression and normal tension

and compression

Shear contact impulses, 𝜆௧መ , follow Coulomb assumptions of planar dry friction such that the maximum
shear impulse magnitude at slipping (i.e., non-zero relative shear displacement) is capped at 𝜆௧መା =𝜆ො 𝑡𝑎𝑛 𝜙 (where 𝜙 is the friction angle). Assuming perfectly isotropic Coulomb friction (which can be
visually represented with a “friction cone”) (Figure 1), the direction of the shear impulse ensures that energy
is maximally dissipated. Numerical errors (if present) in the friction model can be attributed to their
coupling with contact normal impulses (which is dependent on contact stiffness and damping) and/or
linearized approximation of the friction problem (for numerical efficiency, e.g., polyhedral cone
approximation [15], [16], box approximation [14]) (Figure 1).

Once contact impulses have been determined, the equations of motion for the complete multibody system
can be expressed as follows:

(5) ቈ𝑴 −𝑱𝑻𝑱 𝚺 ቈ𝒖ሶ ା𝛌ା = ቈ 𝑴𝒖ሶ + ∆𝑡𝒇−𝚼 𝝍∆௧ − 𝚬𝑱𝒖ሶ
Matrices 𝚺 and 𝚼 contain the constraint force mixing (CFM) and error reduction parameters (ERP) for each
constraint 𝑚. The CFM introduces artificial compliance to the system (i.e., allowing flexibility for violating
constraints), and the ERP determines fraction of the constraint error (𝜓ା) that is resolved in the next time-
step. These constraint stabilization parameters are a product of the spring-dashpot non-interpenetrative
contact model and can be tuned using Δ𝑡, 𝑘, and 𝑐 (or sometimes directly specified as an input). The matrix
E contains the coefficients of restitution (which are accounted for while solving for kinematic constraints
– typically 0). The physics engine’s chosen solver – e.g., pivoting methods (which can find an exact solution
using a direct solver), iterative methods (which find an approximate solution using iterations) – is then used
to find the system velocities at the next time-step, 𝒖ା from Eqn. Error! Reference source not found.).
Bullet Physics implements the Projected Gauss-Seidel iterative solver. The rigid body positions, 𝒒, are then
updated using 𝒒ା = 𝒒 + Δ𝑡𝑺𝒖ା, where 𝑺 maps the angular velocities in 𝒖ା to their respective quaternion
orientations.

OUT-OF-PLANE COLLAPSE ANALYSIS
The analyses presented in this section were run using Python version 3.12 and PyBullet version 3.2.6 [8]
on a Dell Precision 7865 Tower PC equipped with an AMD Ryzen Threadripper CPU. Select constructions
from experimental OOP tilting tests by Restrepo-Vélez et al. (2014) [9] that were modelled using DEM by
Bui et al. (2017) [11] were replicated in the PyBullet simulation environment (naming conventions from
Restrepo-Velez et al. are used herein). Experimental assemblies were constructed of masonry blocks with
dimensions 80 mm × 40 mm × 30 mm and density 2680 kg/m3 and wood lintels/joists (if present) with a
density of 160 kg/m3. Specimens included C-walls of varying aspect ratios and a two-story building – exact
configurations and dimensions can be found in Restrepo-Vélez et al. (2014) [9].

The tilting apparatus in PyBullet was constructed by using the p.createMultiBody function to join two rigid
plates of dimensions 1200 mm × 800 mm × 10 mm at the edge with a hinge constraint (i.e., rotation OOP
is only degree of freedom). All rigid bodies, including the masonry units, in the simulation used the box
collision shape. A narrow support half the height of a single URM unit was fixed with respect to the top
tilting plate to prevent the structure from sliding off. Like in the DEM simulations, a friction coefficient of
0.67 – the minimum experimentally found coefficient – was used between the masonry joints (a coefficient
of 0.4 was used between wood and masonry). Through preliminary simulations, the authors observed that
variation in the friction coefficient had a minimal effect on tilting angle at collapse (±1°). Gravity was set
to -9.8 m/s2, and the simulation was manually stepped using p.stepSimulation. Each model commenced
with at least 2 seconds of purely gravity loads to ensure equilibrium. For quasi-static tilting, the apparatus
was rotated at a rate of 1 degree/s until near collapse (1-2 degrees prior to expected collapse), where the
rotation rate was slowed to the experimental rate of 0.045 degree/s. Additional physics engine parameters
used are shown in
Table 1. While the CFM parameter was not exposed in the PyBullet user interface, the ERP could be
specified on a scale from 0 to 1 – the fraction of the positional error to be corrected in the next time-step.

Table 1: PyBullet simulation parameters

Time-step Sub-steps* Solver
iterations

Contact
stiffness

Contact
damping ERP Coefficient of

restitution
[s] [–] [–] [N/m] [Ns/m] [–] [–]

0.001 0 10 109 10 0.95 0

*S42 construction used 3 sub-steps for stability

Assemblies under out-of-plane tilting
Assemblies simulated under OOP tilting can be grouped into three categories: interior collapse C-walls (S1-
3, 5, and 6), exterior collapse C-walls (S7, 8-9, 10), and C-walls with an interior partition. The observed
failure mechanisms and collapse progression can be shown in Figure 2, Figure 3, and Figure 4 for each
category, respectively. As expected from DEM models and experimental results, the PyBullet simulations
of the interior collapse C-walls exhibited collapse mechanism G (see [17] for detailed descriptions of
collapse mechanisms referenced herein) – characterized as a central trapezoidal portion of the façade
displacing and rotating outwards. Exterior collapse C-walls reproduced collapse mechanism A (i.e.,
overturning of the main wall) with the overturning portion hinging around the center of the wall. Specimen
22, C-wall with openings and an interior partition, exhibited a B2 collapse mechanism (i.e., overturning of
the façade and portions of the orthogonal walls). Mechanisms A and B2 also feature diagonal cracking on
the orthogonal walls (secondary IP shear-compression failure).

Collapse was herein defined as a local or global severe damage limit state or post-failure condition when
(i) components lose their ability to withstand vertical load and (ii) units or components/assemblies dislocate
and start interacting dynamically [1]. The critical angle at collapse (𝜑) was defined as the rotational
displacement where block behaviour fit the aforementioned definition of collapse – this was identified
through visual observation of the collapse progression. While 𝜑 was underestimated in PyBullet (as much
as -40%) for all specimens, there was an overall decreasing trend of 𝜑 while the length/height aspect ratio
increased (Table 2), which is in agreement with experimental and DEM results. This underestimation is
likely attributed to excessive block slipping which can be a product of the coupling between contact normal
and friction impulses. This is especially evident in S22, where the lintels lose frictional resistance and lead
to IP failure in the orthogonal walls and loss of connection with the façade. Unexpected rotations of blocks
near the structure base are also observed, which can be attributed to the engine attempting to adhere to the
non-interpenetration constraints. Conversely, DEM typically overestimated experimental critical angles (up
to +15.32%) for interior walls and underestimated (up to -9.25%) for exterior walls.

Figure 2: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9]
for interior collapse C-walls (specimens S1, 2, 3, 5, 6)

Figure 3: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9]
for the exterior collapse C-walls (specimens S7, 8, 9, 10)

Figure 4: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9]
for specimen S22 (C-wall with partition)

Table 2: Comparison of critical angle for PyBullet, DEM [11], and experimental tests [9]

Specimen S1 S2 S3 S5 S6 S7 S8 S9 S10 S22 S42

Aspect Ratio, L/H 1.5 1.5 1.5 1.09 1.77 1.088 0.816 0.816 1.633 - -

C
ri

tic
al

 A
ng

le

φ c
r [

°]

PyBullet 10.85 - - 15.41 9.20 12.56 16.16 - 9.79 7.62 9.07

DEM 14.68 - - 18.11 12.30 16.01 18.06 - 12.46 10.54 11.09

Experimental 14.25 12.73 13.71 19.24 11.75 16.22 19.90 19.39 12.02 11.14 13.28

Buildings under out-of-plane tilting
A two-story URM construction (S42) of dimensions 800 mm × 1040 mm × 1260 mm was also tested under
OOP tilting (Figure 5). A set of wood joists were used to simulate the slabs with vertical reactions of 16.46
N applied at the end of each joist in the form of an equivalent density block. Eight openings are present
(four on each story), each with a lintel on top. Due to the scale of the simulation, the number of sub-steps
was increased to 3 for numerical stability (fewer sub-steps led to erroneous large displacements). Similar
to specimen S22, this specimen exhibited the B2 collapse mechanism however with hinging at the height
midpoint instead of the base (this contrasts with the experimental test which exhibited asymmetrical rotation
of the façade). As the joists were free to move axially, shear resistance in the orthogonal direction was
similarly governed by lintels – which can contribute to an underestimation (-34%) of the collapse angle.
Nevertheless, diagonal shear cracking near the openings was still observed across both numerical models
prior to collapse.

Figure 5: Observed collapse mechanisms in PyBullet, DEM [11], and experimental tests [9]
for specimen S42

Computational speeds for all simulations are shown in Table 3. As expected, the execution time increased
as the number of rigid bodies in the system increased – similarly observed by Hamano et al. (2016) [18] for
simulations using Bullet CPU. Increasing the tilting rate to 1 deg/s (for pre-collapse angles) greatly
improved execution times. Although computational times for URM assemblies did not exceed 20 minutes,
specimen S42 required 5.25 hours. However, it’s acknowledged that this model had significantly more
time-steps and over double the amount of rigid bodies. Computational difficulties may also arise from the
high stiffness of the system (i.e., numerous rigid bodies stacked on top of each other) leading to issues with
the numerical solver. Although respective DEM computational times are not reported, comparably sized
models (with URM assemblies) can take up to 30 minutes to complete (based on authors’ own experience).
While further investigation of the model’s sensitivity (regarding numerical efficiency and mechanical
output) to selected inputs is warranted, this study confirms PyBullet’s capability to simulate OOP behaviour
beyond near collapse at a meso-scale discretization with practical execution times.

Table 3: PyBullet execution times

Specimen S1,2,3 S5 S6 S7 S8,9 S10 S22 S42
Aspect Ratio, L/H 1.5 1.09 1.77 1.088 0.816 1.633 - -

No. blocks 387 324 429 450 408 660 846 1826
Execution Time (min) 6.61 7.11 10.06 15.42 16.1 11.77 19.51 315.47

CONCLUSIONS
Initial exercises of quasi-static OOP tilting using PyBullet support the feasibility of physics engines for
quantitative URM structural analysis. Although critical angles were underestimated, expected collapse
mechanisms G, A, and B2 were largely reproduced – modifications to the friction and shear contact models
in future studies can address conservative predictions of critical angle. Additional tests of different
specimens (e.g., aspect ratio, number of blocks) and loading conditions (e.g., IP shear-compression,
settlements, seismic loading) are necessary to further uncover capabilities and limitations of physics
engines. Key considerations from this study include:

• The default isotropic Coulomb friction model embedded in PyBullet underestimates the shear
contact forces leading to premature slipping in the joints.

• Additional studies into the direct effects of the physics engine parameters on mechanical behaviour
are needed to fully understand the simulation’s contact model.

• Loading schemes such as dynamic and cyclic testing have yet to be explored using PyBullet –
findings therein can confirm constitutive laws under loading and un-loading conditions.

• Computational times are practical (under 20 minutes) for URM assemblies but can be improved
using GPU computing resources or more efficient numerical solvers in the contact formulation.

ACKNOWLEDGEMENTS
The authors acknowledge funding from the Government of Canada’s New Frontiers in Research Fund
(NFRF) [Ref. No. NFRFE-2022-00312]. The work of the first author was also supported by the Fonds de
recherche du Québec Nature et Technologies (FRQNT), through the B2X scholarship program.

REFERENCES
[1] D. N. Grant et al., “Explicit modelling of collapse for Dutch unreinforced masonry building typology

fragility functions,” Bull. Earthq. Eng., vol. 19, no. 15, pp. 6497–6519, Dec. 2021, doi:
10.1007/s10518-020-00923-y.

[2] P. A. Cundall, “Formulation of a three-dimensional distinct element model-Part I. A scheme to detect
and represent contacts in a system composed of many polyhedral blocks,” Int. J. Rock Mech. Min.
Sci., vol. 25, no. 3, pp. 107–116, 1988, doi: 10.1016/0148-9062(88)92293-0.

[3] H. Tagel-Din, “A new efficient method for nonlinear, large deformation and collapse analysis of
structures,” Ph. D. thesis, Civil Eng. Dept., The University of Tokyo. 東京大学, 1998. [Online].
Available: http://ci.nii.ac.jp/naid/10004542840/

[4] M. Jean, “The non-smooth contact dynamics method,” Comput. Methods Appl. Mech. Eng., vol. 177,
no. 3–4, pp. 235–257, 1999, doi: 10.1016/S0045-7825(98)00383-1.

[5] A. M. D’Altri et al., “Modeling Strategies for the Computational Analysis of Unreinforced Masonry
Structures: Review and Classification,” Arch. Comput. Methods Eng., vol. 27, no. 4, pp. 1153–1185,
2020, doi: 10.1007/s11831-019-09351-x.

[6] F. Galvez, D. Dizhur, and J. M. Ingham, “Correction to: Adjacent interacting masonry structures:
shake table test blind prediction discrete element method simulation (Bulletin of Earthquake
Engineering, (2023), 10.1007/s10518-023-01640-y),” Bull. Earthq. Eng., pp. 1–27, 2023, doi:
10.1007/s10518-023-01655-5.

[7] R. A. Bello, M. Günaydin, and A. C. Altunişik, “Structural Collapse Visualization Using Blender and
BCB,” in Sustainable Civil Infrastructures, A. S. Mosallam, B. El Bhiri, V. M. Karbhari, and S.
Saadeh, Eds., Cham: Springer Nature Switzerland, 2023, pp. 163–172. doi: 10.1007/978-3-031-
47428-6_13.

[8] E. Coumans and Y. Bai, “PyBullet Quickstart Guide,” PyBullet, vol. 1, no. 1. PyBullet Quickstart
Guide. https://docs. google. com/document/u/1/d …, pp. 1–84, 2023.

[9] L. F. Restrepo Vélez, G. Magenes, and M. C. Griffith, “Dry stone masonry walls in bending-Part I:
Static tests,” Int. J. Archit. Herit., vol. 8, no. 1, pp. 1–28, Jan. 2014, doi:
10.1080/15583058.2012.663059.

[10] B. Pulatsu, S. Gonen, E. Erdogmus, P. B. Lourenço, J. V. Lemos, and R. Prakash, “In-plane structural
performance of dry-joint stone masonry Walls: A spatial and non-spatial stochastic discontinuum
analysis,” Eng. Struct., vol. 242, p. 112620, 2021, doi: 10.1016/j.engstruct.2021.112620.

[11] T. T. Bui, A. Limam, V. Sarhosis, and M. Hjiaj, “Discrete element modelling of the in-plane and out-
of-plane behaviour of dry-joint masonry wall constructions,” Eng. Struct., vol. 136, pp. 277–294, Oct.
2017, doi: 10.1016/j.engstruct.2017.01.020.

[12] G. Lancioni, S. Lenci, Q. Piattoni, and E. Quagliarini, “Dynamics and failure mechanisms of ancient
masonry churches subjected to seismic actions by using the NSCD method: The case of the medieval
church of S. Maria in Portuno,” Eng. Struct., vol. 56, pp. 1527–1546, 2013, doi:
10.1016/j.engstruct.2013.07.027.

[13] D. Malomo and B. Pulatsu, “Discontinuum models for the structural and seismic assessment of

unreinforced masonry structures: a critical appraisal,” Structures, vol. 62, 2024, doi:
10.1016/j.istruc.2024.106108.

[14] S. Andrews, K. Erleben, and Z. Ferguson, “Contact and friction simulation for computer graphics,” in
Proceedings - SIGGRAPH 2022 Courses, Association for Computing Machinery, Inc, Aug. 2022. doi:
10.1145/3532720.3535640.

[15] M. Anitescu and F. A. Potra, “Formulating Dynamic Multi-Rigid-Body Contact Problems with
Friction as Solvable Linear Complementarity Problems,” Nonlinear Dyn., vol. 14, no. 3, pp. 231–247,
1997, doi: 10.1023/A:1008292328909.

[16] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for rigid body dynamics with
inelastic collisions and coulomb friction,” Int. J. Numer. Methods Eng., vol. 39, no. 15, pp. 2673–
2691, 1996, doi: 10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I.

[17] D. D’Ayala and E. Speranza, “Definition of Collapse Mechanisms and Seismic Vulnerability of
Historic Masonry Buildings,” Earthq. Spectra, vol. 19, no. 3, pp. 479–509, Aug. 2003, doi:
10.1193/1.1599896.

[18] T. Hamano, M. Onosato, and F. Tanaka, “Performance comparison of physics engines to accelerate
house-collapsing simulations,” in SSRR 2016 - International Symposium on Safety, Security and
Rescue Robotics, 2016, pp. 358–363. doi: 10.1109/SSRR.2016.7784327.

