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ABSTRACT 
Unreinforced masonry (URM) buildings are widely prevalent across North America due to their durability, 
cost-effectiveness, and construction simplicity. However, older and sub-standard URM structures are 
particularly vulnerable to seismic loads, often experiencing severe damage and catastrophic collapse. The 
resulting debris from such collapses poses a significant threat to the functionality of transportation systems, 
severely hindering critical post-disaster operations such as medical rescue and personnel evacuation. 
Discontinuous modeling is the most effective approach for simulating URM failure mechanisms, as it 
accurately captures block detachment and damage evolution. However, traditional structural analysis tools 
require numerous input parameters and involve high computational costs. To address these limitations, this 
study employs Blender, a software primarily designed for video game development, to simulate URM 
collapse using its integrated physics engine. While physics engines share similarities with structural 
analysis tools, they prioritize computational efficiency over absolute accuracy, enabling significantly faster 
simulations. Following an initial validation against experimental data, the Blender physics engine was used 
to generate a virtual experimental database, incorporating variations in key parameters such as ground 
motion intensity and building height. Based on the generated database, the gradient boosted decision trees 
(GBDT) algorithm was employed to develop debris distribution prediction models, with hyperparameter 
tuning performed through ten-fold cross-validation. The resulting GBDT-based model is demonstrated to 
reliably predict the debris distribution of URM buildings and generate debris distribution heatmaps, which 
can intelligently inform decision-making in post-earthquake functional recovery efforts by proving insights 
into potential obstruction zones, optimizing resource allocation, and enhancing the efficiency of emergency 
response operations.  
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INTRODUCTION 
Road networks play an essential role in urban social-economic development by facilitating transportation, 
trade, and connectivity. However, these networks are highly susceptible to disruption during seismic events 
due to their direct and indirect interactions with the built environment. One major vulnerability stems from 
collapsed buildings generating debris that blocks critical roadways [1,2], impeding traffic flow and 
rendering sections of the network inaccessible. This obstruction severely hampers post-earthquake 
emergency response, including rescue operations and resident evacuation. The restoration of road 
functionality in post-earthquake scenarios is thus a crucial aspect of disaster resilience and recovery 
planning. 

Research has demonstrated that different structural types (e.g., concrete, masonry, timber, etc.) can exhibit 
distinct collapse mechanisms during seismic events and thus lead to varying patterns and extents of debris 
deposition [3]. These differences can influence the post-earthquake functionality of road networks with 
varying degrees of impact. Therefore, it is essential to develop debris distribution prediction models that 
can account for the unique characteristics of different structural types. Such models would provide critical 
insights for disaster management, enabling more accurate planning of rescue routes and allocation of 
recovery resources. 

Unreinforced masonry (URM) is one of the most prevalent structural types worldwide for both residential 
buildings and industrial facilities. Historical earthquake events worldwide have underscored that these 
structures, particularly older and substandard ones, are highly vulnerable to horizontal loads, making them 
prone to widespread damage and collapse, resulting in extensive debris generation [4–6]. However, while 
significant progress has been made in predicting debris distribution for structural types like reinforced 
concrete [7] and confined masonry [8], this field remains limitedly explored for URM structures. 
Domaneschi et al. [9] studied the debris range of collapsed URM structures through an applied element 
method (AEM), and developed analytical models for debris range prediction through linear regression 
techniques. Although the simple linear function form can facilitate the comprehension and application for 
engineers, it cannot be guaranteed that the target function is well modeled by this preselected class. To 
overcome the limitations of predefined function classes, data-driven machine learning models can be 
employed to provide a more reliable representation of the target function, with their successful applications 
widely demonstrated in structural and earthquake engineering over recent decades [10–14].  

In the aforementioned studies [7–9], developing debris distribution prediction tools conventionally requires 
extensive numerical simulations of URM collapse and debris patterns, as obtaining experimental or real-
world data is often prohibitively expensive in this field. Consequently, a robust and accurate numerical 
model for URM collapse simulation is essential for developing analytical or simplified debris distribution 
prediction tools. The seismic response of URM buildings is traditionally assessed using macro-modeling 
approaches within the Finite Element Method (FEM) framework [15,16]. Regular geometries are often 
simplified using equivalent frame models [15], while complex geometries are represented as 3D continuum 
models [17]. However, these methods struggle to predict collapse behavior and debris distribution, as they 
inherently can hardly simulate large displacements or out-of-plane failures. This limitation arises because 
continuous models do not explicitly represent the individual masonry units and their interfaces, making it 
difficult to capture block separation, sliding, and rotation that govern the collapse mechanisms of URM 
structures. To address these limitations, a discontinuous modeling approach is required, in which masonry 
is represented as an assembly of blocks interacting through interface laws. Among the available techniques, 
the Discrete Element Method (DEM) [18] and Non-Smooth Contact Dynamics (NSCD) [19] accurately 
simulate collapse mechanisms but are computationally expensive, making them impractical for large-scale 
structures and full-collapse scenarios outside research settings [20]. The Applied Element Method (AEM), 



used by  Domaneschi et al. and Sediek et al. [7,9], is a hybrid approach between FEM and DEM that 
balances computational efficiency and accuracy. While AEM reduces computational costs compared to 
DEM, it still requires significantly more resources than FEM. Given the need for a large simulation 
database, we believe that even with AEM, running a vast number of simulations would be excessively time-
consuming. For this reason, this study employs Blender, a software primarily used for video game 
development, which integrates a physics engine. Physics engines, commonly used in computer graphics to 
simulate real-world dynamics, share similarities with structural analysis software but prioritize 
computational efficiency over absolute accuracy, enabling significantly faster simulations. Recent research 
has explored the use of physics engines to simulate URM vault collapses [21]  and rocking motion of URM 
columns [22], yet quantitative data on the collapse of entire URM structures remains scarce. 

In addition, most existing studies on seismic debris distribution [3,7–9,23] focused exclusively on either 
the maximum debris range or a specific range that covers a fixed percentage of the total debris volume (e.g., 
100% or 90%). While these approaches provide useful insights, they often fail to account for the varying 
threshold percentages that disrupt road transit, which can differ significantly based on case-specific 
requirements and local conditions. As a result, they may either underestimate or overestimate the severity 
of road obstructions, limiting their effectiveness in prioritizing debris removal or planning optimal 
emergency routes in diverse urban contexts. Thus, a more versatile approach is needed to enhance the 
applicability of debris distribution predictions in diverse scenarios. For example, a heatmap-based 
prediction method could offer a more comprehensive representation of debris distribution patterns, allowing 
for a rigorous evaluation of road network disruptions. Such a method would provide valuable support for 
assessing the resilience of urban road networks and informing post-earthquake recovery strategies. 

To this end, this paper studies the seismic debris heatmap prediction for URM structures. Firstly, a physics 
engine-based numerical model was developed to simulate the collapse behavior and debris patterns of URM 
structures, which was then validated using existing experimental tests. Subsequentially, the validated 
numerical model was utilized to generate a virtual experimental database that accounts for varying input 
parameters, including ground motion intensity and building height. The resulting virtual experimental 
database was then split into training and testing sets to facilitate the development of data-driven debris 
distribution prediction models, where the gradient boosted decision trees (GBDT) algorithm was employed 
for model development and debris heatmap generation, enabling a versatile and robust approach to debris 
distribution prediction. 

PHYSIC ENGINE-BASED MODEL FOR URM COLLAPSE SIMULATION 
The collapse behavior and debris distribution are simulated through physic engine model in Blender [24] 
using a simplified micro-modelling approach, where block dimensions are enlarged to include the mortar 
thickness. The block elements are assumed to be rigid with a prescribed mass density. In this paper, the 
densities for clay brick, timber lintel, and reinforced concrete (slab) are 1890 kg/m3, 610 kg/m3, and 2320 
kg/m3, respectively. The interactions between elements are governed by a non-smooth contact law, which 
enforces impenetrability and incorporates a dry friction model. Parameters utilized to define this contact 
model and to set the analyses are summarized in Table 1. The impact between blocks is modelled as perfect 
plastic by setting the bounciness coefficient equal to zero, assuming that energy dissipation occurs solely 
due to friction. In addition, the convex hull is adopted for the collision detection shape to avoid numerical 
inaccuracies during the collision detection, as well as to balance accuracy and computational efficiency.  

The developed physics engine model is then utilized to simulate URM collapse and validated against the 
experimental of a one-story URM building test by Candeias et al. [25] as shown in Figure 1. This one-story 
URM building had a plan dimension of 4.15 m × 2.50 m, and a maximum height of 2.75m. It consisted of 



a gabled façade and two transverse walls, constructed with hollow clay bricks (235 mm × 115 mm × 70 
mm) and arranged according to the English bond pattern. Wooden lintels were placed above the windows. 
The main objective of Candeias et al. was to study the out-of-plane response of this structure under a 
unidirectional earthquake applied perpendicular to the main façade by a shaking table test. The earthquake 
considered in their study was adopted from the recorded ground motion that occurred near Christchurch 
(New Zealand) on 21 February 2011. The original ground motion of this earthquake was unable to induce 
structural collapse for this test and was thus scaled incrementally. When the reference signal was scaled to 
300% (a PGA of 1.27g), which was achieved at the eighth increment, collapses occurred. 

Table 1: Parameters in the developed physic engine model 

Parameter Unit Adopted value 
Solver iteration-steps [step] 10 

Collision Detection shape - Convex Hull 
Collision margin [m] 10-6 

Simulation sub-steps [steps/s] 2 
Simulation rate [fps] 200 

Bounciness coefficient [%] 0.00 
Friction coefficient - 1.00 (45°) 

Translational damping - 0.00 
Rotational damping - 0.00 

 

Figure 1: Comparison between experimental and numerical results 

In this study, only the last experimental incremental stage is simulated, purely focusing the collapse 
behavior and debris distribution. It is assumed that the model being in a pre-damaged state where the mortar 
contribution was just lost. The same ground motion from [25] is assigned in terms of displacement time 
history at the base block. As shown in Figure 2, the developed model satisfactory, although not perfectly, 
captured the structural collapse and wall overturning behaviors. Similar damage locations and debris 
patterns are observed between experimental and numerical results. The results demonstrate that the 



developed model can approximate the out-of-plane response of URM structures with efficient 
computational cost. 

VIRTUAL EXPERIMENTAL DESIGN 
The validated physic engine-based model is then employed to generate a virtual experimental database on 
seismic debris distribution. Two URM structures, the one-story building from [25], and a two storey 
building with the same plan dimensions as the one-story building, are modelled as shown in Figure 2. It is 
assumed that the two storey building is built with the same materials and technique as the one-story building 
from [25]. A 150 mm reinforced concrete slab floor is considered for this two-storey building, as well as a 
hypothesized timber-pitched roof as a common approach in URM constructions and simulations [26].   

 

Figure 2: Building types considered in virtual experimental design 

A total of 251 scenarios are simulated by considering different ground motions and building types as 
summarized in Table 2. The selection of ground motions is based on the intensity measure of cumulative 
absolute velocity (CAV), which accounts for both the amplitude and duration of ground motions and is 
better correlated with structural cumulative damage and collapse mechanisms compared with other intensity 
measures. With a wide cover range of CAV from 3.4 to 40.5, a total of 11 ground motion records are 
adopted from the Pacific Earthquake Engineering Research (PEER) ground motion database [27]. Similar 
to the experimental observations reported in [25], certain ground motion records fail to induce the full 
collapse of URM structures. An amplification/reduction factor of α is thus applied to each ground motion 
by scaling the acceleration amplitude uniformly over its entire duration, until a full collapse of URM 
structures is observed. For example, in Table 2, [3.75, 11, 0.25] represents numbers increasing from 3.75 
to 11 with an increment of 0.25. In addition, two collapse analyses are conducted for each virtual test, 
applying the ground motion perpendicular and parallel to the main façade, respectively. The analysis 
yielding the largest debris area is then included in the virtual experimental database. 

The volume and coordinates of each block are recorded throughout the URM collapse simulation process. 
Subsequently, the seismic debris heatmap can be generated for each simulation, as illustrated in Figure 3.  
The innermost rectangle represents the footprint (a’ × b’) of the URM building prior to collapse, while the 
outermost rectangle represents the expanded footprint (a × b) after collapse that covers all seismic debris. 
This amplification factor for the footprint dimension, R, is defined as a function of critical variables in the 
virtual experimental design, as expressed in Eq. (1),  

(1) 𝑅 ൌ 𝑓ሺ𝐶𝐴𝑉, ℎ,𝛼,𝛽ሻ                                                                         



where CAV denotes the intensity measure of ground motions,  h is the number of stories, 𝛼 is the scale 
factor applied to ground motions, and 𝛽 represents the percentage of covered debris volume, ranging from 
0.5 to 1.0. When 𝛽 = 1.0, 𝑅 =  ௔ᇲ௔ = ௕ᇲ௕ , as shown in Figure 3. Using the predefined model parameters in 
Eq. (1), machine learning prediction models can be developed to estimate the amplification factor of R, 
which can subsequently be utilized to generate seismic debris heatmaps. The predicted amplification factor 𝑅 is used to scale the original building footprint to define the spatial extent of debris dispersion, forming a 
rectangular boundary that encompasses a specified percentage of the total debris volume. This boundary is 
then discretized into a uniform grid to generate a debris distribution heatmap, where each cell represents 
the relative debris density within that area. 

Table 2: Virtual experimental design matrix 

Building type Earthquake CAV (m/s) α 

One-storey 

Saguenay 3.4 40, 50, 60, 100, 200 
Hollister 4.2 [3.75, 11, 0.25] 

Southnapa 6.0 [5.75, 11, 0.25] 
Friuli 6.7 [3.25, 11, 0.25] 

Christchurch 8.3 [1.25, 4.25, 0.25] 
Morgan Hill 9.3 [2.25, 9, 0.25] 
Loma pierta 12.6 [1.75, 6.25, 0.25] 

Imperial Valley 16.4 [1.5, 6, 0.25] 
Northridge 17.9 [0.75, 3, 0.25] 

Chi-Chi 25.9 [0.75, 3, 0.25] 
Nahanni 40.5 [0.25, 1, 0.25] 

Two-storey 

Saguenay 3.4 50, 60, 100 
Hollister 4.2 [4.75, 8, 0.25] 

Southnapa 6.0 [8, 11, 0.25] 
Friuli 6.7 [6.25, 6.5, 0.25] 

Christchurch 8.3 [1.5, 2.5, 0.25] 
Morgan Hill 9.3 [4.25, 6, 0.25] 
Loma pierta 12.6 [2, 2.5, 0.25] 

Imperial Valley 16.4 [2.5, 3, 0.25] 
Northridge 17.9 [0.75, 2, 0.25] 

Chi-Chi 25.9 [0.5, 1.25, 0.25] 
Nahanni 40.5 0.25 



 

Figure 3: Seismic debris heatmap visualization 

GBDT-BASED SEISMIC DEBRIS DISTRIBUTION PREDICTION 
This study represents an initial stage of a broader research program, where GBDT was selected due to its 
strong performance in capturing nonlinear relationships and its proven robustness in small-to-medium-sized 
datasets. Future work will involve a systematic comparison with other machine learning algorithms 
commonly used in structural and earthquake engineering to identify the most effective approach for debris 
distribution prediction. The GBDT algorithm is an ensemble learning method that constructs models 
sequentially, optimizing their predictive accuracy by iteratively minimizing a predefined loss function 
through gradient descent. Each tree is built to correct the residual errors of its predecessor, ensuring 
continuous improvement in the overall model. In this study, mean squared error (MSE) was used as the loss 
function to guide the optimization process. Unlike random forests, where individual trees are constructed 
independently, GBDT trees are dependent and added sequentially, which enhances their predictive 
capabilities. GBDT is particularly suited for capturing complex, nonlinear relationships [28], making it a 
robust choice for predicting seismic debris distribution in collapsed masonry buildings. 

The virtual experimental database is split into training and testing subsets with 80% and 20% of the total 
data, respectively. Hyperparameter tuning is then conducted for the GBDT algorithm through 10-fold cross-
validations using the training dataset. The coefficient of determination, usually denoted as R2, is adopted as 
the performance evaluation metric as shown in Eq. (2), 

(2) 𝑅ଶ = 1 − ∑ ሺ௬೔ି௬ො೔ሻమ೙೔సభ∑ ሺ௬೔ି௬ത೔ሻమ೙೔సభ  

where 𝑦௜ is the actual target value for the i-th observation, 𝑦ො௜ denotes its predicted counterpart, 𝑦ത௜ is the 
mean of the actual target values, and n is the total number of observations in the dataset. 

Critical hyperparameters considered for tuning include learning rate ranging from 0.001 to 0.3, the number 
of boosting stages ranging from 50 to 500, the maximum depth of individual estimators ranging from 2 to 
10, the minimum samples required to split an internal node ranging from 2 to 10, and the minimum samples 
required to be at a leaf node ranging from 2 to 10. Through the exhaustive grid search approach, the optimal 
values from these hyperparameters are 0.2, 250, 5, 2, and 2, respectively.  

The performance of the developed GBDT model is evaluated on the testing dataset, as summarized in Table 
3. To facilitate comparison and assess potential overfitting, the model's performance is also examined on 



the training dataset. In addition to R2, another two widely used performance metrics, root mean squared 
error (RMSE) and mean absolute error (MAE), are employed, as shown in Eq. (3) and (4).  

(3) 𝑅𝑀𝑆𝐸 = ටଵ௡∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ  

(4) 𝑀𝐴𝐸 = ଵ௡ ∑ ⌊𝑦௜ − 𝑦ො௜⌋௡௜ୀଵ  

Table 3: Model performance evaluation 

Training dataset Testing dataset 
R2 RMSE MAE R2 RMSE MAE 

0.9869 0.1454 0.0851 0.9357 0.3035 0.1543 

The developed GBDT model demonstrates strong performance on the testing dataset, achieving an R2 value 
of 0.9357, where an R2 value of 1.0 indicates perfect accuracy. As expected, the model performs slightly 
better on the training dataset, but no significant overfitting is observed. The evaluation metrics, R2, RMSE, 
and MAE, show consistent results, with lower RMSE and MAE scores corresponding to higher R2 values. 
These findings indicate that the developed GBDT model is a reliable tool for predicting seismic debris 
distribution in URM structures and generating seismic debris heatmaps, which can aid in prioritizing debris 
removal strategies, enhancing the efficiency of post-earthquake road network recovery, and supporting 
comprehensive resilience assessments of affected regions. 

CONCLUSIONS 
This study presented a preliminary framework for accurately predicting the debris distribution of URM 
buildings to mitigate their impact on transportation systems and facilitate efficient post-disaster operations. 
A physics engine-based numerical model was developed and validated using existing experimental data to 
simulate collapse behavior and debris patterns, based on which a virtual experimental database on URM 
collapse and debris distribution was generated.  

Leveraging this database, the GBDT algorithm was employed to predict seismic debris distribution and 
generate distribution heatmaps. The developed model achieved strong predictive performance, with an R2 
value of 0.9357 on the testing dataset, demonstrating its accuracy and generalization capability. Evaluation 
results from multiple metrics, including RMSE and MAE, were consistent, and no significant overfitting 
issues were observed. 

The developed models can be utilized to inform post-earthquake functionality recovery of road networks 
and resilience assessment of affected regions. By optimizing resource allocation and enhancing the 
efficiency of emergency response operations, the developed GBDT model provides a critical tool for 
improving disaster preparedness and accelerating recovery efforts in urban environments vulnerable to 
seismic hazards. In the next stage of this research program, more machine learning algorithms will be 
employed to evaluate their performance and compared with the GBDT algorithm in this manuscript, where 
more comprehensive insights on debris distribution prediction are expected to be revealed. 
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