Nollet, Marie-José1; Abo El Ezz, Ahmad2; Moretti, Pascal3 and Boldireff, Éric3

1 Professor, Department of Construction Engineering, École de technologie supérieure, 1100 Notre-Dame St. W., Montreal, QC, Canada, marie-jose.nollet@etsmtl.ca
2 Post-Doctoral Fellow, Department of Construction Engineering, École de technologie supérieure, 1100 NotreDame St. W., Montreal, QC, Canada, ahmad.abo-el-ezz.1@ens.etsmtl.ca
3 Master student, Department of Construction Engineering, École de technologie supérieure, 1100 Notre-Dame St. W., Montreal, QC, Canada, pascal.moretti.1@ens.etsmtl.ca and eric.boldireff.1@ens.etsmtl.ca

ABSTRACT
In Eastern Canada, seismic vulnerability analysis of unreinforced stone masonry buildings relies on analytical methods consisting of structural modeling and evaluation of the likelihood for a given building to experience damage from earthquake of a given intensity. In this paper, the main components of a vulnerability assessment procedure are reviewed with emphasis on the significance of masonry mechanical properties on damage estimates. An experimental program is presented which was developed to assess mechanical properties of typical stone masonry assemblies composed of lime-stone blocks joined with cement/lime mortar commonly used in heritage buildings construction in Eastern Canada. The experimental joint shear bond, compressive and diagonal shear strength parameters were used to develop seismic vulnerability functions expressed as function of the mean damage factor (MDF) corresponding to the expected repair cost ratio for increasing seismic intensity measure (IM=Sa0.3sec). The influence of the mechanical properties on damage assessment is evaluated. The results provided a quantitative assessment of the impacts of mechanical properties on the predicted seismic induced repair costs for stone masonry buildings. This has a direct impact on the decisions of risk assessment studies for seismic mitigation and retrofit that are related to the expected repair costs for the corresponding site-specific seismic hazard intensity.

190

The following two tabs change content below.

CMDC Research

Articles and papers posted under CMDC Research cover a wide variety of academic topics. To read more posts uploaded by CMDC Research, click the "Latest Posts" tab displayed above and select "(see all)" to view a full list.